Propagazione mobile e wireless

Informazioni generali

~

Ambito Ingegneria elettronica

Lingua di erogazione ITALIANO

Tipo attività didattica Lezioni

Titolari <u>MASSA ANDREA</u>, <u>OLIVERI GIACOMO</u>

Durata 48 ore (48 ore Lezioni)

Settore scientifico disciplinare ING-INF/02

Obiettivi formativi e risultati di apprendimento attesi

Il corso fornisce le conoscenze di base per l'analisi e la progettazione di sistemi e dispositivi wireless. Partendo dall'analisi di differenti contesti applicativi, il corso presenta le principali tecnologie ed architetture wireless adottate allo stato dell'arte, analizzandone in maniera approfondita e comparativa i principali blocchi funzionali sia software che hardware. L'obiettivo del corso consiste nel fornire gli strumenti richiesti all'ingegnere dell'informazione per l'analisi, la progettazione e la pianificazione di sistemi e dispositivi wireless attualmente utilizzati e di futuro impiego in contesti applicativi di interesse scientifico ed industriale tra cui le smart cities, l'internet of things (IoT), e l'industria 4.0.

Prerequisiti

Moduli di matematica di base; moduli di fisica di base; fondamenti di campi elettromagnetici.

Contenuti/Programma del corso

Modeling di Sistemi Wireless:

- modeling di singoli elementi radianti per le comunicazioni wireless (es., a banda stretta,

banda larga, multi-banda);

- modeling di array di elementi radianti per comunicazioni wireless, radar e telerilevamento;
- modeling di sistemi di antenne innovativi per applicazioni di comunicazione terrestre e spaziale;
- analisi di scenari complessi e modeling dell'intero sistema wireless, considerando le interazioni con l'ambiente circostante;
- modeling di scenari wireless complessi in presenza di esseri umani e tessuti biologici;
- modeling di sistemi wireless basati su materiali innovativi per applicazioni di comunicazione.

Localizzazione Wireless:

- utilizzo opportunistico dei segnali generati da dispositivi e reti di comunicazione wireless già esistenti per la localizzazione passiva;
- modeling di scenari indoor e outdoor per localizzazione;
- elaborazione di metodologie avanzate per la localizzazione wireless;
- sviluppo di software per sistemi di localizzazione.

Reti di Sensori Wireless (WSN):

- implementazione di un ambiente urbano intelligente ed efficiente attraverso reti di sensori wireless;
- progettazione di WSN per ambienti urbani intelligenti e per agricoltura di precisione;
- applicazioni innovative di sistemi WSN per Industria 4.0.

Sistemi di Supporto alla Decisione basati su Informazioni Wireless:

- introduzione a sistemi di informazione che supportano il processo decisionale;
- studio di tecniche per ridurre il carico computazionale nella gestione di sistemi complessi;
- studio di algoritmi che forniscono soluzioni compromesso in problemi complessi.

Metodi didattici utilizzati e attività di apprendimento richieste allo studente

L'attività didattica è organizzata nel modo seguente:

- 50% di lezioni teoriche relative alla teoria di base e gli approcci metodologici per l'analisi e soluzione dei problemi che saranno presentati come casi di studio;
- 20% di lezioni dedicate allo svolgimento di esercizi e soluzione dei casi di studio, anche legati ad esempi applicativi di interesse pratico;
- 30% di esercitazioni software (emulatori hardware) finalizzate all'apprendimento di software avanzati per la modellistica, analisi e progettazione di sistemi e dispositi wireless moderni ed il loro utilizzo.

Eventuale materiale didattico (es., esercizi svolti, materiale di approfondimento) sarà reso disponibile nel sito del corso indicato dal docente all'inizio delle lezioni.

Metodi di accertamento e criteri di valutazione

v

L'esame consiste nello sviluppo di un breve progetto e nell'esecuzione di un questionario scritto. In dettaglio:

Progetto breve

Il progetto breve consiste nello sviluppo di un'attività che riguarda gli argomenti trattati nel corso nonché aspetti innovativi nel campo delle tecnologie e dispositivi wireless. Il voto massimo della parte progettuale è 15. L'attività, a scelta dello studente, può essere richiesta tramite comunicazione via email al titolare del corso. Durante lo sviluppo del progetto, lo studente sarà assistito da un tutor individuato all'inizio del progetto.

Questionario scritto

La prova scritta consiste in domande a risposta multipla sull'intero programma del corso. Il punteggio massimo della prova scritta è 15. Durante la prova scritta non è consentito l'utilizzo di appunti, testi o calcolatrici programmabili. Le formule utili sono riassunte in un documento disponibile sulla pagina web del corso o che sarà reso disponibile il giorno dell'esame.

Il voto finale viene calcolato come somma dei voti acquisiti nelle parti progetto e prova scritta.

Libri di testo/Libri consigliati

- Ian F. Akyildiz, Mehmet Can Vuran, Wireless Sensor Networks, Wiley, 2010.
- S. R. Vijayalakshmi and S. Muruganand, Wireless Sensor Networks: An Introduction, Mercury Learning & Information, 2018.
- K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, Wiley, 2003.
- C. Haslett, Essentials of Radio Wave Propagation, Cambridge University Press, 2008.
- D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.
- A. Zaidi, F. Athley, J. Medbo, U. Gustavsson, G. Durisi, and X. Chen, 5G Physical Layer. Academic Press, 2018.

Altre informazioni

Materiale Didattico

Eventuale materiale integrativo (es., prontuari, esercitazioni HW/SW svolte) sara' reso disponibile durante il corso sul sito https://www.eledia.org/eledia-unitn/course/

Comunicazioni/Avvisi

Al fine di ottimizzare le comunicazioni tra docenti e studenti, tutte le comunicazioni ed avvisi (variazione orario delle lezioni, calendario prove d'esame, disponibilità di materiale didattico, etc...) avverranno tramite e-mail inviata alla mailing list del corso cui gli studenti sono invitati ad iscriversi all'inizio delle lezioni previa accesso al sito web https://www.eledia.org/eledia-unitn/course/

Ulteriori dettagli riguardo al corso possono essere trovati al link https://www.eledia.org/eledia-unitn/course/