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1 Fixed measurement step ∆
meas
z

= 1 [λ] and different number of measure-

ment points (M) and same number of estimated coefficients for both BCS-

MbD & OMP-MbD

The main goal of this section is to compare the performance of the OMP and BCS solvers when the same number of

estimated coefficients are considered. In particular, given the BCS solution, the OMP iteration to show is chosen according

to the number of indexes selected by the BCS algorithm.

1.0.1 Height of the measurement region Hmeas = 5 [λ]

Near-Field Error
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Figure 1: (a) Near-field error comparison between original (OMP) and alternative (BCS) MbD for different SNR values

when the same number of coefficients are considered for both OMP and BCS; (b) Comparison between near-field error

(a) and the case in which the optimal OMP iteration is considered.
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SNR [dB] Near Field Error, Ξ [dB]
BCS OMP

50 −65.18 −55.15
40 −56.53 −45.15
30 −34.03 −30.21
20 −21.42 −20.48
10 −10.35 −9.12

Table I: Near Field Errors obtained by the original (OMP) and alternative (BCS) MbD

Observations

By observing the reported results, it is possible to point out that the consideration of a number of OMP coefficients (i.e.

considered OMP iteration) equal to that of the BCS results in a degradation of the OMP performance so that the BCS

near-field error is always lower than that of the OMP solver.

page 4/21



Estimated Coefficients
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Figure 2: Coefficient comparison between original (OMP) and alternative (BCS) MbD : (a) SNR = 50 [dB], (b) SNR =
40 [dB], (c) SNR = 30 [dB], (d) SNR = 20 [dB], (e) SNR = 10 [dB]

Observations

The considered AUT is characterized by an excitation magnitude and phase of the second subarray (i.e., ν(2) = 0.43 and

γ(2) = π

3 [rad]):

• the OMP algorithm is able to identify at least one failure affecting the AUT even if the failure detections are not

precise since the method selects also vectors not connected to the actual failures and it doesn’t pick all the vectors

of the failures affecting the AUT;

• the BCS algorithm is able to identify both the failures affecting the AUT even if the failure detections, at 10 [dB] ≤

page 5/21



SNR ≤ 30 [dB], are not precise since the method selects also vectors not connected to the actual failures and it

doesn’t pick all the vectors of the failures affecting the AUT. For SNR ≥ 40 [dB] the BCS precisely selects all the

basis functions associated to the failures affecting the AUT.
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1.0.2 Height of the measurement region Hmeas = 4 [λ]

Near-Field Error
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Figure 3: (a) Near-field error comparison between original (OMP) and alternative (BCS) MbD for different SNR values

when the same number of coefficients are considered for both OMP and BCS; (b) Comparison between near-field error

(a) and the case in which the optimal OMP iteration is considered.

SNR [dB] Near Field Error, Ξ [dB]
BCS OMP

50 −61.91 −53.34
40 −50.45 −43.35
30 −38.39 −32.81
20 −23.87 −21.83
10 −11.94 −9.03

Table II: Near Field Errors obtained by the original (OMP) and alternative (BCS) MbD

Observations

By observing the reported results, it is possible to point out that the consideration of a number of OMP coefficients (i.e.

considered OMP iteration) equal to that of the BCS results in a degradation of the OMP performance so that the BCS

near-field error is always lower than that of the OMP solver.
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Estimated Coefficients
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Figure 4: Coefficient comparison between original (OMP) and alternative (BCS) MbD : (a) SNR = 50 [dB], (b) SNR =
40 [dB], (c) SNR = 30 [dB], (d) SNR = 20 [dB], (e) SNR = 10 [dB]

Observations

The considered AUT is characterized by an excitation magnitude and phase of the second subarray (i.e., ν(2) = 0.43 and

γ(2) = π

3 [rad]):

• the OMP algorithm is able to identify at least one failure affecting the AUT even if the failure detections are not

precise since the method selects also vectors not connected to the actual failures and it doesn’t pick all the vectors

of the failures affecting the AUT;

• the BCS algorithm is able to identify both the failures affecting the AUT even if the failure detections are not
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precise at low SNRs since the method selects also vectors not connected to the actual failures and it doesn’t pick

all the vectors of the failures affecting the AUT. In particular, the BCS correctly identify both the failures affecting

the AUT starting from SNR = 40 [dB].
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1.0.3 Height of the measurement region Hmeas = 3 [λ]

Near-Field Error
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Figure 5: (a) Near-field error comparison between original (OMP) and alternative (BCS) MbD for different SNR values

when the same number of coefficients are considered for both OMP and BCS; (b) Comparison between near-field error

(a) and the case in which the optimal OMP iteration is considered.

SNR [dB] Near Field Error, Ξ [dB]
BCS OMP

50 −61.93 −48.67
40 −50.78 −38.68
30 −32.44 −26.26
20 −19.85 −14.88
10 −5.49 −6.33

Table III: Near Field Errors obtained by the original (OMP) and alternative (BCS) MbD

Observations

By observing the reported results, it is possible to point out that the consideration of a number of OMP coefficients (i.e.

considered OMP iteration) equal to that of the BCS results in a degradation of the OMP performance so that the BCS

near-field error is almost always lower than that of the OMP solver.
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Estimated Coefficients
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Figure 6: Coefficient comparison between original (OMP) and alternative (BCS) MbD : (a) SNR = 50 [dB], (b) SNR =
40 [dB], (c) SNR = 30 [dB], (d) SNR = 20 [dB], (e) SNR = 10 [dB]

Observations

The considered AUT is characterized by an excitation magnitude and phase of the second subarray (i.e., ν(2) = 0.43 and

γ(2) = π

3 [rad])

• the OMP solver selects vectors associated to both magnitude and phase failures and is always able to identify at

least one failure affecting the AUT.

• the BCS algorithm is able to identify both the failures affecting the AUT even if the failure detections are not

precise since the method selects also vectors not connected to the actual failures and it doesn’t pick all the vectors
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of the failures affecting the AUT. In particular, the BCS precisely identify both the failures affecting the AUT only

at SNR = 40 [dB].
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1.0.4 Height of the measurement region Hmeas = 2 [λ]

Near-Field Error
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Figure 7: (a) Near-field error comparison between original (OMP) and alternative (BCS) MbD for different SNR values

when the same number of coefficients are considered for both OMP and BCS; (b) Comparison between near-field error

(a) and the case in which the optimal OMP iteration is considered.

SNR [dB] Near Field Error, Ξ [dB]
BCS OMP

50 −59.59 −8.76
40 −17.65 −15.97
30 −7.51 −5.76
20 2.17 2.67
10 12.74 12.65

Table IV: Near Field Errors obtained by the original (OMP) and alternative (BCS) MbD

Observations

By observing the reported results, it is possible to point out that the consideration of a number of OMP coefficients (i.e.

considered OMP iteration) equal to that of the BCS results in a degradation of the OMP performance so that the BCS

near-field error is almost always lower than that of the OMP solver.

page 13/21



Estimated Coefficients
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Figure 8: Coefficient comparison between original (OMP) and alternative (BCS) MbD : (a) SNR = 50 [dB], (b) SNR =
40 [dB], (c) SNR = 30 [dB], (d) SNR = 20 [dB], (e) SNR = 10 [dB]

Observations

The considered AUT is characterized by an excitation magnitude and phase of the second subarray (i.e., ν(2) = 0.43 and

γ(2) = π

3 [rad]):

• the OMP solver selects vectors associated to both magnitude and phase failures and in some cases is able to identify

the magnitude failure affecting the AUT.

• the BCS algorithm is able to identify at least one failure affecting the AUT even if the failure detections are not

precise since the method selects also vectors not connected to the actual failures and it doesn’t pick all the vectors
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of the failures affecting the AUT. At SNR = 50 [dB] the BCS solver precisely identifies both the failures affecting

the AUT.
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1.0.5 Height of the measurement region Hmeas = 1 [λ]

Near-Field Error

-40

-30

-20

-10

 0

 10

 20

 10  20  30  40  50

N
ea

r-
F

ie
ld

 E
rr

or
,  

Ξ 
 [d

B
]

SNR [dB]
BCS OMP

(a)

-40

-30

-20

-10

 0

 10

 20

 10  20  30  40  50

N
ea

r-
F

ie
ld

 E
rr

or
,  

Ξ 
 [d

B
]

SNR [dB]

BCS OMPsub-opt OMPopt

(b)

Figure 9: (a) Near-field error comparison between original (OMP) and alternative (BCS) MbD for different SNR values

when the same number of coefficients are considered for both OMP and BCS; (b) Comparison between near-field error

(a) and the case in which the optimal OMP iteration is considered.

SNR [dB] Near Field Error, Ξ [dB]
BCS OMP

50 −12.26 −39.10
40 −12.22 −10.83
30 −12.23 −19.10
20 −12.26 −5.79
10 11.66 11.25

Table V: Near Field Errors obtained by the original (OMP) and alternative (BCS) MbD

Observations

By observing the reported results, it is possible to point out that the consideration of a number of OMP coefficients (i.e.

considered OMP iteration) equal to that of the BCS results in a degradation of the OMP performance; nevertheless, both

solvers achieve errors that do not allow a good near-field reconstruction, except the case SNR = 50 [dB] for the OMP.
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Figure 10: Coefficient comparison between original (OMP) and alternative (BCS) MbD : (a) SNR = 50 [dB], (b)

SNR = 40 [dB], (c) SNR = 30 [dB], (d) SNR = 20 [dB], (e) SNR = 10 [dB]

Observations

The considered AUT is characterized by an excitation magnitude and phase of the second subarray (i.e., ν(2) = 0.43 and

γ(2) = π

3 [rad]):

• the OMP algorithm is able to identify at least one failure affecting the AUT even if the failure detections are not

precise since the method selects also vectors not connected to the actual failures and it doesn’t pick all the vectors

of the failures affecting the AUT;

• the BCS solver selects vectors associated to both magnitude and phase failures
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• and identifies only the phase failure affecting the AUT.
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More information on the topics of this document can be found in the following list of references.
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