An Innovative Sparseness-Promoting Inverse
Scattering Approach Based on the
Born Iterative Method

G. Oliveri, L. Poli, N. Anselmi, M. Salucci, and A. Massa

Abstract

In this work, non-Born targets are imaged through a novel inverse scattering (/S)
methodology in microwave regime. The proposed method is based on a sparseness-
promoting approach formulated within the single-task Bayesian compressive
sensing (ST-BCS) framework. Moreover, the ST-BCS solver is effectively combined
with a Born iterative method (BIM) inversion strategy to retrieve the target contrast
while estimating the total electric field inside the imaged domain without recurring
to time-consuming full-wave simulations. Some preliminary numerical results are
reported to assess the effectiveness of the proposed BIM-ST-BCS method, as well as
to highlight its current limitations.
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Legenda

BC'S: Bayesian Compressive Sensing

ST — BC'S: Standard Bayesian Compressive Sensing
MT — BCS : Multi Task Bayesian Compressive Sensing
MoM: Method of Moments

BA : First Born approximation

BIM : Born Iterative Method

MSE : Mean Squared Error

CG : Conjugate Gradient

CS1I : Contrast Source Inversion



1 Mathematical Formulation

Let us consider an inaccessible investigation domain A irradiated by a set of incident transverse-magnetic planes
E? . (rY),v=1,..,V , impinging from the angular directions #* = 2% (v — 1), being V the number of views. In
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this working scenario, the scattered field E?, ,, (r¥), s =1,...,.5 , is supposed to be measured through a set of S
sensors equally displaced on a circular observation domain ©, external to the investigation domain (AN© = 0),
having radius p. The exact location of the sensors are identified by the position vector r? = (pcos6? sin?),

being 07 = 0¥ + 2F (s — 1). This scattered field is known to be dependent on the equivalent currents Jey (1)

generated in the support of the unknown scatterers placed into the domain A, according to the data equation:

Bl () = =4 [ 72, 00) G (e ) ar )

where G (r?/r’) is the Green’s function in the free space and ko = w./Eopo. The material properties of the

investigation domain A in terms of relative dielectric permittivity e, (r) and electric conductivity o (r) are

described by means of the object function 7 (r) = &, (r) — g — er(frgo, being f the frequency of the TM plane

wave.
In order to solve the problem, we have to discretise the data equation, so we have decided to use the MoM point
matching version with a pixel-based approch. The investigation domain it is divided in N subdomains, in which

our unknown J, (r) it is considered constant. The basis functions have this form:

+1 reD,
qn(r) = (2)
0 r¢D,

where D,, is the n-th subdomain (pixel). Instead the testing functions are Dirac §:

Now we can rewrite the data equation as follows:

£

scatt

| =[G[T¢,] (4)

where [G°"!] is the external Green’s function that links the position vector in the observation domain with those

in the investigation domain.



The equivalent current J¢, (r) depends on two unknown variables:

e the object function 7 (r);

e the total electric field in the investigation domain E;"(r).

So our problem is Bilinear. Using the First Born Approximation we can make it linear. In this case, E{%f(r) is
considered equal to E?, .(r) (known quantity). But this approximation can be apply only under the hypothesis

of weak scatterators. The data equation is now:

B

scatt

| = (G ]I (5)
To mitigate ill-posedness and ill-conditioning, which affects inverse scattering, regularization approches have
been adopted thanks to their capability to effectively exploit a-priori information avaiable on the unknown
scatterers. Within this line of reasoning, several probababilistic sparsity regularized formulations have been
recently adopted in microwave imaging through the riformulation of the associated inverse problem in terms
of suitable linear Bayesian Compressive Sensing (BC'S) ones. This approch is now restricted to the condition
of weak scattereres because of the Born approximation. In order to overcome this issues, we want to develop
a novel method in the BCS framework that iteractively recostruct the dielectric features of the scatterers by
progressively updating the total electric field (initially forced equal to the incident electric field) on the basis of

the information acquired at the previous step.

FIRST ITERATION:

Eipf (r) = Bine(r) (6)

from the data equation:

[Escatt] = [Gem] [Eww] [T] (7)

SECOND ITERATION:

we can use the information acquired at the previous iteration:

Ei?f = Ei?;tt Eine
[ _ J=1 . ]+ [Einc] ®)
[Erean] = (G Einc][7]

scatt



now in the data equation we can put the new value of [E"!] and we recalculate the [Escqr]:

[Bscare] = (G| [Egpf]l7] 9)

i-th ITERATION:

we can use the information acquired at the (i — 1)-th iteration. For this reason we define:

e [Einf]; =the new value of [E{"!] for the i-th iteration
o [Et 1,1 =[E™, ] generated by the reconstructed object at the (i — 1)-th iteration

e [7];—1 =object function evalueted at the (i — 1)-th iteration

[T]; =object fanction evalueted at the i-th iteration

We update the [E;%] with the following system:

[E;gtt]l = [Eint ]i—l + [Einc]

scatt
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we repeat those steps until we reach a certain threshold n or maxime number of iterations (In;ax)-

For the threshold we have considered the M SE of the relative dielectric permittivity(e,) reconstructed in two

following iterations. To estimate the M SFE we have used this formula:

MSE = < > lekm) = P (11)

where:

e n =number of cells in which the investigation domain is divided

e cl(n), n=1,..., N =relative dielectric permittivity of the i-th iteration

If MSFE < n, the Born Iterative Method will stop.



2 Preliminary Numerical Assessment

2.1 Rectangle-shaped Object, { = \/6, h = \/3

Figure 1: Rectangle-shaped Object

Test Case Description

Direct solver:

e Cubic domain divided in /D x v/ D cells

e Number of cells for the direct solver: D = 1296 (discretization = \/12)
Inverse solver:

e Cubic domain divided in VN x /N cells

e Number of cells for the inversion: N = 324 (discretization = \/6)
Measurement domain:

e Total number of measurements: M = 27

e Measurement points placed on circles of radius p = 3\
Sources:

Plane waves

Number of views: V = 27; 6},. = 0° + (v — 1) x (360/V)

Amplitude: A =1.0

e Frequency: F' =300 MHz (A = 1)

Background:
e . =10
e 0 =0][S/m]



Scatterer

e Rectangle-shaped object, £ = \/6, h = \/3
e £. 4.0

e 0 =0[S/m]
Born Iterative Method

o Ipjax =10

o= 10—3
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approximation
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Figure 2: Rectangle-shaped Object, £ = \/6, h = \/4: (a) Direct problem with 7 = 3.0, (b) ST-BCS
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2.1.2 Rectangle-shaped Object, ¢{ = \/6, h = \/3,

Iterative Method (Ip;4x = 10)

- ST-BCS reconstructed profiles with Born

15 35
L L il K
25
05 | I —
2 =
S o g Z
15 @2
05 | —
1
1 TH 05
-15 L L L L 0
15 05 0 05 1 15
XIN
(a)
15 ‘ ‘ ‘ ‘ 35 15 ‘ ‘ ‘ ‘ 35 15 ‘ ‘ ‘ ‘
1+ 18 3 1+ 18 3 1k i
25 25
05 |- R 05 |- R 05 |- R
< 2 = 2 =
M ™2 s o} M2 5o} ]
I 15 ¢ 15
05 |- R 05 - R 05 |- R
& 1 1
1r Tt o5 1 H os 1r 1
15 I I I I 0 15 I I I I 0 15 I I I I
15 05 0 05 1 15 15 05 0 05 1 15 15 05 0 05 1 15
XA XA XA
(b) (c) (d)
15 ‘ ‘ 35 15 ‘ ‘ 35 15 : ‘
1+ 19 3 1+ 18 3 1k i
25 25
05 |- I R 05 |- I R 05 |- I R
< 2 = 2 =
AN B2 s o} 72 5o} ]
I 15 15
05 |- R 05 - R 05 |- R
& 1 1
1r Tt o5 1 Tk os 1r 1
15 I I I I 0 15 I I I I 0 15 I I I I
15 05 0 05 1 15 15 05 0 05 1 15 15 05 0 05 1 15
XA XA XIA
(e) (f) (9)
15 ‘ ‘ 35 15 ‘ ‘ 35 15 ‘ ‘
1+ 48 3 1+ 45 3 1+ g
25 25
05 | I — 05 |- I — 05 | I —
< 2 = 2 =
o H S or B i S or ] i S of 7
Il 15 @ 15 @2
05 | E 05 | — 05 | —
& 1 1
1r 1t os 1 1k os 1 1
15 I I I I 0 15 I I I I 0 15 I I I I
15 05 0 05 1 15 15 05 0 05 1 15 15 05 0 05 1 15
XA XIA XA
(h) (i) (1)

Re[t(x.y)]

Re[t(x.y)]

Re[t(x.y)]

Figure 3: Rectangle-shaped Object, ¢ = \/6, h = A\/3: (a) Direct problem with = = 3.0, (b)(e)(h) ST-BCS
reconstructed profiles for SN R = 50 [dB], (¢)(f)(i) SNR = 30 [dB] and (d)(g)(I) SNR = 20 [dB] with (b)-(d)
Born Iterative Method at the first iteration (I = 1), (e)-(¢) Born Iterative Method at the second iteration
(I =2), (h)-(1) Born Iterative Method at the third iteration (I = 3)
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Figure 4: Rectangle-shaped Object, { = \/6, h = \/3: (a)(d)(g)(l) ST-BCS reconstructed profiles for SN R = 50
[dB], (b)(e)(h)(m) SNR = 30 [dB] and (¢)(f)(i)(n) SNR = 20 [dB] with (a)-(¢) Born Iterative Method at
the fourth iteration (I = 4), (d)-(f) Born Iterative Method at the fifth iteration (I =5), (g¢)-(i¢) Born Iterative
Method at the sixth iteration (I = 6) , (I)-(n) Born Iterative Method at the seventh iteration (I = 7)
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Figure 5: Rectangle-shaped Object, £ = \/6, h = \/3: (a)(d)(g)(l) ST-BCS reconstructed profiles for SN R = 50
[dB], (b)(e)(h)(m) SNR = 30 [dB] and (¢)(f)(i)(n) SNR = 20 [dB] with (a)-(¢) Born Iterative Method at the
eighth iteration (I = 8), (d)-(f) Born Iterative Method at the ninth iteration (I = 9), (¢g)-(7) Born Iterative
Method at the tenth iteration (I = 10)
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Rectangle-shaped Object, ¢ = \/6, h = \/3,

Iterative Method (Threshold 7)
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Tab. 1 shows the number of iterations before stopping BIM.
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