A Classification Approach based on SVM for Electromagnetic Sub-Surface Sensing

Massa, Andrea and Bermani, Emanuela and Boni, Andrea and Donelli, Massimo (2004) A Classification Approach based on SVM for Electromagnetic Sub-Surface Sensing. [Technical Report] (Submitted)

[img]
Preview
Text
DIT-04-069.pdf

Download (663kB) | Preview

Abstract

In clearing terrains contamined or potentially contamined by landmines and/or unexploded ordnances (UXOs), a quick wide-area surveillance is often required. Nevertheless, the identification of dangerous areas (instead of the detection of each subsurface object) can be enough for some scenarios/applications, allowing a suitable level of security in a cost-saving way. In such a framework, this paper describes a probabilistic approach for the definition of risk maps. Starting from the measurement of the scattered electromagnetic field, the probability of occurrence of dangerous targets in an investigated subsurface area is determined through a suitably defined classifier based on a Support Vector Machine (SVM). To assess the effectiveness of the proposed approach and to evaluate its robustness, selected numerical results related to a two-dimensional geometry are presented.

Item Type: Technical Report
Subjects: Uncategorized > TU Technical Reports and Publications
URI: http://www.eledia.org/students-reports/id/eprint/417

Actions (login required)

View Item View Item