eprintid: 895 rev_number: 9 eprint_status: archive userid: 14 dir: disk0/00/00/08/95 datestamp: 2024-09-20 07:27:39 lastmod: 2024-09-20 07:27:39 status_changed: 2024-09-20 07:27:39 type: monograph metadata_visibility: show creators_name: OLIVERI, Giacomo creators_name: ANSELMI, Nicola creators_name: SALUCCI, Marco creators_name: POLI, Lorenzo creators_name: MASSA, Andrea creators_id: giacomo.oliveri@unitn.it creators_id: nicola.anselmi.1@unitn.it creators_id: marco.salucci@unitn.it creators_id: lorenzo.poli@unitn.it creators_id: andrea.massa@unitn.it title: Compressive Sampling for Scattering Data Collection in Microwave Imaging ispublished: pub subjects: AWC subjects: MCS full_text_status: public monograph_type: technical_report keywords: Compressive Sensing, Inverse Scattering Inverse Scattering (Free-space) abstract: This research focuses on designing microwave imaging data acquisition systems. Initially, the collection of scattering data is framed using Compressive Sampling (CS), a technique in signal processing that allows accurate reconstruction of signals from fewer samples than traditional methods like Nyquist-Shannon. CS leverages the sparsity of signals to reduce the number of measurements required, making data acquisition more efficient. The problem is tackled by developing a novel incoherence-based bound on the Restricted Isometry Constant (RIC) of the observation matrix, which serves as the mathematical model for the acquisition system and incorporates the physical characteristics of microwave imaging. Numerical experiments are performed to evaluate the method’s effectiveness in data acquisition and its impact on CS-based inversion, in comparison to typical Nyquist–Shannon sampling techniques. date: 2024-09-13 publisher: ELEDIA Research Center - University of Trento referencetext: [1] M. Salucci, L. Poli, and G. Oliveri, “Full-vectorial 3D microwave imaging of sparse scatterers through a multi-task Bayesian compressive sensing approach,” Journal of Imaging, vol. 5, no. 1, pp. 1-24, Jan. 2019. [2] M. Salucci, A. Gelmini, L. Poli, G. Oliveri, and A. Massa, “Progressive compressive sensing for exploiting frequency-diversity in GPR imaging,” J. Electromagn. Waves Appl. J, vol. 32, no. 9, pp. 1164-1193, 2018. [3] G. Oliveri, P.-P. Ding, and L. Poli “3D crack detection in anisotropic layered media through a sparseness-regularized solver,”IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1031-1034, 2015. [4] Y. Zhong, F. Zardi, M. Salucci, G. Oliveri, and A. Massa, “Multiscaling differential contraction integral method for inverse scattering problems with inhomogeneous media,” IEEE Trans. Microw. Theory Tech., vol. 71, no. 9, pp. 4064-4079, Sep. 2023. [5] X. Ye, F. Zardi, M. Salucci, and A. Massa, “Multiresolution subspace-based optimization method for the retrieval of 2-D perfect electric conductors,” IEEE Trans. Microw. Theory Tech., vol. 71, no. 4, pp. 1732-1744, Apr. 2023. [6] G. Oliveri, N. Anselmi, M. Salucci, L. Poli, and A. Massa, “Compressive sampling-based scattering data acquisition in microwave imaging,” J. Electromagn. Waves Appl. J, vol. 37, no. 5, 693-729, Mar. 2023. [7] M. Salucci, L. Poli, P. Rocca, and A. Massa, “Learned global optimization for inverse scattering problems - Matching global search with computational efficiency,” IEEE Trans. Antennas Propag., vol. 70, no. 8, pp. 6240-6255, Aug. 2022. [8] Y. Zhong, M. Salucci, K. Xu, A. Polo, and A. Massa, “A multi-resolution contraction integral equation method for solving highly non-linear inverse scattering problems,” IEEE Trans. Microw. Theory Tech., vol. 68, no. 4, pp. 1234-1247, Apr. 2020. [9] G. Oliveri, L. Poli, N. Anselmi, M. Salucci, and A. Massa, “Compressive sensing-based Born iterative method for omographic imaging,” IEEE Tran. Microw. Theory Techn., vol. 67, no. 5, pp. 1753-1765, May 2019. [10] N. Anselmi, L. Poli, G. Oliveri, and A. Massa, “Iterative multi-resolution bayesian CS for microwave imaging,” IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3665-3677, Jul. 2018. [11] G. Oliveri, M. Salucci, and N. Anselmi, “Tomographic imaging of sparse low-contrast targets in harsh environments through matrix completion,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 6, pp. 2714-2730, Jun. 2018. [12] G. Oliveri, M. Salucci, N. Anselmi, and A. Massa, “Compressive sensing as applied to inverse problems for imaging: theory, applications, current trends, and open challenges,” IEEE Antennas Propag. Mag., vol. 59, no. 5, pp. 34-46, Oct. 2017. [13] N. Anselmi, G. Oliveri, M. A. Hannan, M. Salucci, and A. Massa, “Color compressive sensing imaging of arbitrary-shaped scatterers,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 6, pp. 1986-1999, Jun. 2017. [14] T. Moriyama, M. Salucci, M. Tanaka, and T. Takenaka, “Image reconstruction from total electric field data with no information on the incident field,” J. Electromagn. Waves Appl. J, vol. 30, no. 9, pp. 1162-1170, 2016. [15] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, “Wavelet-based compressive imaging of sparse targets,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4889-4900, Nov. 2015. [16] X. Ye, L. Poli, G. Oliveri, Y. Zhong, K. Agarwal, A. Massa, and X. Chen,“Multi-resolution subspace-based optimization method for solving three-dimensional inverse scattering problems,” J. Opt. Soc. America A, vol. 32, no. 11, pp. 2218-2226, Nov. 2015. [17] G. Oliveri, N. Anselmi, and A. Massa, “Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation,” IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014. [18] T. Moriyama, G. Oliveri, M. Salucci, and T. Takenaka, “A multi-scaling forward-backward time-stepping method for microwave imaging,” IEICE Electronics Express, vol. 11, no. 16, pp. 1-12, Aug. 2014. [19] L. Poli, G. Oliveri, P.-P. Ding, T. Moriyama, and A. Massa, “Multifrequency Bayesian compressive sensing methods for microwave imaging,” J. Opt. Soc. America A, vol. 31, no. 11, pp. 2415-2428, 2014. [20] L. Poli, G. Oliveri, and A. Massa, “Imaging sparse metallic cylinders through a Local Shape Function Bayesian Compressive Sensing approach,” J. Opt. Soc. America A, vol. 30, no. 6, pp. 1261-1272, 2013. [21] L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based microwave imaging approach through minimum-norm current expansion,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4722-4732, Sep. 2013. [22] F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, “Sparse scatterers imaging through approximated multitask compressive sensing strategies,” Microwave Opt. Technol. Lett., vol. 55, no. 7, pp. 1553-1558, Jul. 2013. [23] L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination,” IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2920-2936, May 2013. [24] L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2865-2879, Jun. 2012. [25] G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa,“Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method,” J. Opt. Soc. America A, vol. 29, no. 6, pp. 945-958, 2012. [26] G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Optics Letters, vol. 37, no. 10, pp. 1760-1762, 2012. [27] G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sensing, vol. 49, no. 10, pp. 3993-4006, Oct. 2011. [28] G. Oliveri, Y. Zhong, X. Chen, and A. Massa, “Multi-resolution subspace-based optimization method for inverse scattering,” J. Opt. Soc. America A, vol. 28, no. 10, pp. 2057-2069, Oct. 2011. [29] A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact-Newton method - Experimental validation,” Microwave Opt. Technol. Lett., vol. 53, no. 12, pp. 2834-2838, Dec. 2011. [30] M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, “Multiple shapes reconstruction by means of multi-region level sets,” IEEE Trans. Geosci. Remote Sensing, vol. 48, no. 5, pp. 2330-2342, May 2010. [31] M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, “A multi-resolution technique based on shape optimization for the reconstruction of homogeneous dielectric objects,” Inverse Problems, vol. 25, no. 1, pp. 1-26, Jan. 2009. citation: OLIVERI, Giacomo and ANSELMI, Nicola and SALUCCI, Marco and POLI, Lorenzo and MASSA, Andrea (2024) Compressive Sampling for Scattering Data Collection in Microwave Imaging. Technical Report. ELEDIA Research Center - University of Trento. document_url: http://www.eledia.org/students-reports/895/1/Compressive_Sampling_for_Scattering_Data_Collection_in_Microwave_Imaging.pdf