eprintid: 888 rev_number: 8 eprint_status: archive userid: 14 dir: disk0/00/00/08/88 datestamp: 2024-06-07 15:19:59 lastmod: 2024-06-07 15:19:59 status_changed: 2024-06-07 15:19:59 type: monograph metadata_visibility: show creators_name: BENONI, Arianna creators_name: ROCCA, Paolo creators_name: ANSELMI, Nicola creators_name: MASSA, Andrea creators_id: arianna.benoni@unitn.it creators_id: paolo.rocca@unitn.it creators_id: nicola.anselmi.1@unitn.it creators_id: andrea.massa@unitn.it title: Hilbert-Based Clustering Approach for Linear Arrays ispublished: pub subjects: AWC subjects: MAT full_text_status: public monograph_type: technical_report keywords: Local Optimization, Array Synthesis, Sub-Arraying abstract: This research examines the clustering of linear phased arrays (PAs) incorporating complex weights. Through exploitation of the intrinsic locality-preservation property associated with the Hilbert curve, the problem's dimensionality is decreased. Subsequently, a basic clustering algorithm is employed to optimize the alignment of the radiated pattern with a predetermined reference. We systematically assess both contiguous and noncontiguous partitions of the Hilbert-ordered list of complex excitations to comprehensively sample the solution space. Representative outcomes, encompassing reference PAs generating steered pencil and shaped beams, are provided for validation and to underscore the efficacy of our methodology relative to state-of-the-art k-means algorithms. date: 2024-06-07 publisher: ELEDIA Research Center - University of Trento referencetext: [1] N. Anselmi, L. Tosi, P. Rocca, G. Toso, and A. Massa, “A self-replicating single-shape tiling technique for the design of highly modular planar phased arrays - The case of L-shaped rep-tiles,” IEEE Trans. Antennas Propag. , vol. 71, no. 4, pp. 3335-3348, Apr. 2023. [2] A. Benoni, P. Rocca, N. Anselmi, and A. Massa, “Hilbert-ordering based clustering of complex-excitations linear arrays,” IEEE Trans. Antennas Propag. , vol. 70, no. 8, pp. 6751-6762, Aug. 2022. [3] P. Rocca, L. Poli, N. Anselmi, and A. Massa, “Nested optimization for the synthesis of asymmetric shaped beam patterns in sub-arrayed linear antenna arrays,” IEEE Trans. Antennas Propag. , vol. 70, no. 5, pp. 3385 - 3397, May 2022. [4] P. Rocca, L. Poli, A. Polo, and A. Massa, “Optimal excitation matching strategy for sub-arrayed phased linear arrays generating arbitrary shaped beams,” IEEE Trans. Antennas Propag., vol. 68, no. 6, pp. 4638-4647, Jun. 2020. [5] G. Oliveri, G. Gottardi and A. Massa, “A new meta-paradigm for the synthesis of antenna arrays for future wireless communications,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 3774-3788, Jun. 2019. [6] P. Rocca, M. H. Hannan, L. Poli, N. Anselmi, and A. Massa, “Optimal phase-matching strategy for beam scanning of sub-arrayed phased arrays,” IEEE Trans. Antennas and Propag., vol. 67, no. 2, pp. 951-959, Feb. 2019. [7] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, “Contiguous phase-clustering in multibeam-on-receive scanning arrays,” IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 5879-5891, Nov. 2018. [8] L. Poli, G. Oliveri, P. Rocca, M. Salucci, and A. Massa, “Long-Distance WPT Unconventional Arrays Synthesis,” J. Electromagn. Waves Appl. J., vol. 31, no. 14, pp. 1399-1420, Jul. 2017. [9] G. Gottardi, L. Poli, P. Rocca, A. Montanari, A. Aprile, and A. Massa, “Optimal Monopulse Beamforming for Side-Looking Airborne Radars,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1221-1224, 2017. [10] G. Oliveri, M. Salucci, and A. Massa, “Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver,” IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4277-4287, Oct. 2016. [11] P. Rocca, G. Oliveri, R. J. Mailloux, and A. Massa, “Unconventional phased array architectures and design Methodologies - A review,” Proc. IEEE, Invited Paper, vol. 104, no. 3, pp. 544-560, March 2016. [12] P. Rocca, M. D’Urso, and L. Poli, “Advanced strategy for large antenna array design with subarray-only amplitude and phase control,” IEEE Antennas and Wireless Propag. Lett., vol. 13, pp. 91-94, 2014. [13] L. Manica, P. Rocca, G. Oliveri, and A. Massa, “Synthesis of multi-beam sub-arrayed antennas through an excitation matching strategy,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 482-492, Feb. 2011. [14] G. Oliveri, “Multi-beam antenna arrays with common sub-array layouts,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1190-1193, 2010. [15] P. Rocca, R. Haupt, and A. Massa, “Sidelobe reduction through element phase control in sub-arrayed array antennas,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 437-440, 2009. [16] P. Rocca, L. Manica, R. Azaro, and A. Massa, “A hybrid approach for the synthesis of sub-arrayed monopulse linear arrays,” IEEE Trans. Antennas Propag. , vol. 57, no. 1, pp. 280-283, Jan. 2009. [17] L. Manica, P. Rocca, M. Benedetti, and A. Massa, “A fast graph-searching algorithm enabling the efficient synthesis of sub-arrayed planar monopulse antennas,” IEEE Trans. Antennas Propag., vol. 57, no. 3, pp. 652-664, Mar. 2009. [18] P. Rocca, L. Manica, A. Martini, and A. Massa, “Compromise sum-difference optimization through the iterative contiguous partition method,” IET Microwaves, Antennas & Propagation, vol. 3, no. 2, pp. 348-361, 2009. [19] L. Manica, P. Rocca, and A. Massa, “An excitation matching procedure for sub-arrayed monopulse arrays with maximum directivity,” IET Radar, Sonar & Navigation, vol. 3, no. 1, pp. 42-48, Feb. 2009. [20] L. Manica, P. Rocca, and A. Massa, “Design of subarrayed linear and planar array antennas with SLL control based on an excitation matching approach,” IEEE Trans. Antennas Propag., vol. 57, no. 6, pp. 1684-1691, Jun. 2009. [21] L. Manica, P. Rocca, A. Martini, and A. Massa, “An innovative approach based on a tree-searching algorithm for the optimal matching of independently optimum sum and difference excitations,” IEEE Trans. Antennas Propag., vol. 56, no. 1, pp. 58-66, Jan. 2008. [22] P. Rocca, L. Manica, and A. Massa, “An effective excitation matching method for the synthesis of optimal compromises between sum and difference patterns in planar arrays,” Progress in Electromagnetic Research B, vol. 3, pp. 115-130, 2008. [23] P. Rocca, L. Manica, and A. Massa, “Directivity optimization in planar sub-arrayed monopulse antenna,” Progress in Electromagnetic Research L, vol. 4, pp. 1-7, 2008. [24] P. Rocca, L. Manica, M. Pastorino, and A. Massa, “Boresight slope optimization of sub-arrayed linear arrays through the contiguous partition method,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 253-257, 2008. [25] P. Rocca, L. Manica, and A. Massa, “Synthesis of monopulse antennas through the iterative contiguous partition method,” Electronics Letters, vol. 43, no. 16, pp. 854-856, Aug. 2007. [26] P. Rocca, L. Manica, A. Martini, and A. Massa, “Synthesis of large monopulse linear arrays through a tree-based optimal excitations matching,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 436-439, 2007. citation: BENONI, Arianna and ROCCA, Paolo and ANSELMI, Nicola and MASSA, Andrea (2024) Hilbert-Based Clustering Approach for Linear Arrays. Technical Report. ELEDIA Research Center - University of Trento. document_url: http://www.eledia.org/students-reports/888/1/Hilbert-Based_Clustering_Approach_for_Linear_Arrays.pdf