eprintid: 805 rev_number: 7 eprint_status: archive userid: 10 dir: disk0/00/00/08/05 datestamp: 2020-10-30 08:47:04 lastmod: 2020-10-30 08:47:04 status_changed: 2020-10-30 08:47:04 type: monograph metadata_visibility: show creators_name: SALUCCI, Marco creators_name: POLO, Alessandro creators_name: MASSA, Andrea creators_id: marco.salucci@unitn.it creators_id: alessandro.polo.1@unitn.it creators_id: andrea.massa@unitn.it title: A Robust Multi‐Resolution Approach for Solving Fully Non‐Linear Inverse Scattering Problems ispublished: pub subjects: AWC full_text_status: public monograph_type: technical_report keywords: Inverse Scattering, Microwave Imaging, Iterative Multi-Scaling Approach, New Integral Equation abstract: The solution of highly non‐linear inverse scattering (IS) problems is dealt with in this work. More in detail, an innovative IS strategy is introduced to tackle the ill‐posedness and non‐linearity issues, allowing to remarkably overcome the limitations of state‐fo‐the‐art methods based on the classical Lippmann‐Schwinger Integral Equation (LSIE) formulation. It is based on the effective integration of a New Integral Equation (NIE) method with a multi‐resolution scheme (i.e., the Iterative Multi‐Scaling Approach ‐ IMSA). The arising IMSA‐NIE method is able to adaptively increase the resolution only in those sub‐regions of the imaged domain where the presence of an unknown target has been previously detected. Moreover, it allows to robustly retrieve images of strong scatterers even in presence of significant noise components on the scattered field used to make the inversions. Numerical results are shown to validate the effectiveness of the approach under several operative conditions involving several signal‐to‐noise ratios and considering different values of relative permittivity of the unknown target. publisher: ELEDIA Research Center - University of Trento referencetext: [1] G. Oliveri, Y. Zhong, X. Chen, and A. Massa, "Multiresolution subspace-based optimization method for inverse scattering problems," J. Opt. Soc. Am. A, vol. 28, no. 10, pp. 2057-2069, Oct. 2011. [2] X. Ye, L. Poli, G. Oliveri, Y. Zhong, K. Agarwal, A. Massa, and X. Chen, "Multi-resolution subspace-based optimization method for solving three-dimensional inverse scattering problems," J. Opt. Soc. Am. A, vol. 32, no. 11, pp. 2218-2226, Nov. 2015. [3] T. Moriyama, G. Oliveri, M. Salucci, and T. Takenaka, "A multi-scaling forward-backward time-stepping method for microwave imaging," IEICE Electronics Express, vol. 11, no. 16, pp. 20140569(1-10), Aug. 2014. [4] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4889-4900, Nov. 2015. [5] M. Salucci, G. Oliveri, and A. Massa, "GPR prospecting through an inverse scattering frequency-hopping multi-focusing approach," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6573-6592, Dec. 2015. [6] T. Moriyama, M. Salucci, T. Tanaka, and T. Takenaka, "Image reconstruction from total electric field data with no information on incident field," J. Electromagn. Waves Appl., 2016. [7] M. Salucci, L. Poli, and A. Massa, "Advanced multi-frequency GPR data processing for non-linear deterministic imaging," Signal Proc., vol. 132, pp. 306-318, Mar. 2017. [8] M. Salucci, L. Poli, N. Anselmi, and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1305- 1317, Mar. 2017. [9] N. Anselmi, G. Oliveri, M. A. Hannan, M. Salucci, and A. Massa, "Color compressive sensing imaging of arbitrary-shaped scatterers," IEEE Trans. Microw. Theory Techn., vol. 65, no. 6, pp. 1986-1999, Jun. 2017. [10] G. Oliveri, M. Salucci, N. Anselmi, and A. Massa, "Compressive sensing as applied to inverse problems for imaging: theory, applications, current trends, and open challenges," IEEE Antennas Propag. Mag.,vol. 59, no. 5, pp. 34-46, Oct. 2017. [11] M. Salucci, A. Gelmini, L. Poli, G. Oliveri, and A. Massa, "Progressive compressive sensing for exploiting frequency-diversity in GPR imaging," J. Electromagn. Waves Appl., vol. 32, no. 9, pp. 1164- 1193, 2018. [12] G. Oliveri, M. Salucci, and N. Anselmi, "Tomographic imaging of sparse low-contrast targets in harsh environments through matrix completion," IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2714-2730, Jun. 2018. [13] M. Salucci, L. Poli, and G. Oliveri, "Full-vectorial 3D microwave imaging of sparse scatterers through a multi-task Bayesian compressive sensing approach," J. Imaging, vol. 5, no. 1, pp. 1-24, Jan. 2019. [14] M. Salucci, G. Oliveri, and A. Massa, "Real-time electrical impedance tomography of the human chest by means of a learning-by-examples method,", IEEE J. Electromagn., RF, Microw. Med. Biol., vol. 3, no. 2, pp. 88-96, Jun. 2019. [15] G. Oliveri, L. Poli, N. Anselmi, M. Salucci, and A. Massa, "Compressive sensing-based Born iterative method for tomographic imaging," IEEE Trans. Microw. Theory Techn., vol. 67, no. 5, pp. 1753-1765, May 2019. [16] I. Merunka, A. Massa, D. Vrba, O. Fiser, M. Salucci, and J. Vrba, "Microwave tomography system for methodical testing of human brain stroke detection approaches," Int. J. Antennas Propag., vol. 2019, ID 4074862, pp. 1-9, 2019. [17] Y. Zhong, M. Salucci, K. Xu, A. Polo, and A. Massa, "A multi-resolution contraction integral equation method for solving highly non-linear inverse scattering problems," IEEE Trans. Microw. Theory Techn., vol. 68, no. 4, pp. 1234-1247, Apr. 2020. [18] M. Salucci, A. Polo, K. Xu, and Y. Zhong, "A multi-resolution computational method to solve highly non-linear inverse scattering problems," Journal of Physics: Conference Series, vol. 1476, pp. 1-6, 2020. [19] N. Anselmi, L. Poli, G. Oliveri, and A. Massa, "Iterative multi-resolution bayesian CS for microwave imaging," IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3665-3677, Jul. 2018. [20] G. Oliveri, P.-P. Ding, and L. Poli "3D crack detection in anisotropic layered media through a sparseness-regularized solver," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1031-1034, 2015. [21] L. Poli, G. Oliveri, P.-P. Ding, T. Moriyama, and A. Massa, "Multifrequency Bayesian compressive sensing methods for microwave imaging," J. Opt. Soc. Am. A, vol. 31, no. 11, pp. 2415-2428, 2014. [22] G. Oliveri, N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014. citation: SALUCCI, Marco and POLO, Alessandro and MASSA, Andrea A Robust Multi‐Resolution Approach for Solving Fully Non‐Linear Inverse Scattering Problems. Technical Report. ELEDIA Research Center - University of Trento. document_url: http://www.eledia.org/students-reports/805/1/A_Robust_Multi%E2%80%90Resolution_Approach_for_Solving_Fully_Non%E2%80%90Linear_Inverse_Scattering_Problems.pdf