eprintid: 739 rev_number: 11 eprint_status: archive userid: 7 dir: disk0/00/00/07/39 datestamp: 2017-07-11 16:00:24 lastmod: 2018-02-26 15:08:38 status_changed: 2017-07-11 16:00:24 type: monograph metadata_visibility: show creators_name: Salucci, M. creators_name: Poli, L. creators_name: Anselmi, N. creators_name: Massa, Andrea title: Multi‐Resolution Processing of Multi‐Frequency GPR Data for Robust Buried Object Imaging ispublished: pub subjects: AWC subjects: MEA full_text_status: public monograph_type: technical_report keywords: Ground Penetrating Radar (GPR), Inverse Scattering (IS), Multi-Frequency (MF), Particle Swarm Optimization (PSO), Stochastic Optimization, Wide-band Data, Iterative Multi Scaling Approach (IMSA) abstract: This work presents an innovative GPR microwave imaging technique aimed at retrieving the electromagnetic properties of inaccessible domains buried below a planar interface. The arising two‐dimensional (2‐D) inverse scattering problem is solved taking into account for the wide‐band nature of GPR data by exploiting a multi frequency (MF) solution approach. Moreover, a customized multiresolution particle swarm optimizer (IMSA‐PSO) is exploited in order to minimize the MF cost function by adaptively refining the image resolution only in the identified regions of interest (RoIs). A set of numerical experiments is shown in order to verify the effectiveness of the developed MF‐IMSA‐PSO technique when the background permittivity is not exactly known. A comparative assessment with respect to a deterministic local search‐based microwave imaging technique is given, as well, to highlight the superior performances yielded by the exploitation of the PSO solver. date: 2017 publisher: ELEDIA Research Center - University of Trento referencetext: P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse problems,” Inverse Probl., vol. 25, pp. 1-41, Dec. 2009. P. Rocca, G. Oliveri, and A. Massa, “Differential Evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag., vol. 53, no. 1, pp. 38-49, Feb. 2011. M. Salucci, G. Oliveri, and A. Massa, “GPR prospecting through an inverse scattering frequency-hopping multi-focusing approach,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6573-6592, Dec. 2015. M. Salucci, L. Poli, and A. Massa, “Advanced multi-frequency GPR data processing for non-linear deterministic imaging,” Signal Processing - Special Issue on 'Advanced Ground-Penetrating Radar Signal-Processing Techniques,' vol. 132, pp. 306-318, Mar. 2017. M. Salucci, L. Poli, N. Anselmi and A. Massa, “Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1305-1317, Mar. 2017. A. Massa, P. Rocca, and G. Oliveri, “Compressive sensing in electromagnetics - A review,” IEEE Antennas Propag. Mag., pp. 224-238, vol. 57, no. 1, Feb. 2015. A. Massa and F. Texeira, Guest-Editorial: Special Cluster on Compressive Sensing as Applied to Electromagnetics, IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1022-1026, 2015. N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, “Wavelet-based compressive imaging of sparse targets,” IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4889-4900, Nov. 2015. G. Oliveri, N. Anselmi, and A. Massa, “Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation,” IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014. T. Moriyama, G. Oliveri, M. Salucci, and T. Takenaka, “A multi-scaling forward-backward time-stepping method for microwave imaging,” IEICE Electron. Expr., vol. 11, no. 16, pp. 1-12, Aug. 2014. T. Moriyama, M. Salucci, M. Tanaka, and T. Takenaka, “Image reconstruction from total electric field data with no information on the incident field,” J. Electromagnet. Wave., vol. 30, no. 9, pp. 1162-1170, 2016. F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, “Sparse scatterers imaging through approximated multi-task compressive sensing strategies,” Microw. Opt. Technol. Lett., vol. 55, no. 7, pp. 1553-1557, Jul. 2013. M. Salucci, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, “Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 11, pp. 6818-6832, Nov. 2016. L. Poli, G. Oliveri, and A. Massa, “Imaging sparse metallic cylinders through a local shape function bayesian compressing sensing approach,” J. Opt. Soc. Am. A, vol. 30, no. 6, pp. 1261-1272, Jun. 2013. M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Remote Sensing, vol. 47, no. 5, pp. 1467-1481, May 2009. citation: Salucci, M. and Poli, L. and Anselmi, N. and Massa, Andrea (2017) Multi‐Resolution Processing of Multi‐Frequency GPR Data for Robust Buried Object Imaging. Technical Report. ELEDIA Research Center - University of Trento. document_url: http://www.eledia.org/students-reports/739/1/Robust%20Multi-Frequency%20GPR%20Microwave%20Imaging%20through%20Multi-Scaling%20Particle%20Swarm%20Optimization.pdf