eprintid: 737 rev_number: 9 eprint_status: archive userid: 4 dir: disk0/00/00/07/37 datestamp: 2017-06-29 07:27:29 lastmod: 2018-02-26 14:58:56 status_changed: 2017-06-29 07:27:29 type: monograph metadata_visibility: show creators_name: Salucci, M. creators_name: Poli, L. creators_name: Anselmi, N. creators_name: Massa, A. title: Robust Multi-Frequency GPR Microwave Imaging through Multi-Scaling Particle Swarm Optimization ispublished: pub subjects: AWC subjects: MEA full_text_status: public monograph_type: technical_report keywords: Ground Penetrating Radar (GPR), Inverse Scattering (IS), Multi-Frequency (MF), Particle Swarm Optimization (PSO), Stochastic Optimization, Wide-band Data, Iterative Multi Scaling Approach (IMSA) abstract: In this work, an innovative GPR microwave imaging technique is proposed for solving the subsurface inverse scattering problem in a multi-frequency (MF) framework. The proposed technique exploits a stochastic optimizer based on particle swarm optimization (PSO) in order to effectively deal with the minimization of the MF cost function without being trapped into false solutions. Moreover, the iterative multi-scaling approach (IMSA) is exploited in order to achieve higher resolutions within the identified regions of interest. Some numerical results are shown, carefully selected from an extensive validation of the method, in order to assess its performance when dealing with the retrieval of buried objects under several noise levels. More precisely, a variation of the number of measurement points placed above the interface to collect the scattered radargram is considered, in order to investigate the robustness of the developed method, as well as to compare it to a deterministic implementation within the same solution framework. date: 2017 publisher: University of Trento referencetext: [1] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Probl., vol. 25, pp. 1-41, Dec. 2009. [2] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., vol. 53, no. 1, pp. 38-49, Feb. 2011. [3] M. Salucci, G. Oliveri, and A. Massa, "GPR prospecting through an inverse scattering frequency-hopping multi-focusing approach," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6573-6592, Dec. 2015. [4] M. Salucci, L. Poli, and A. Massa, "Advanced multi-frequency GPR data processing for non-linear deterministic imaging," Signal Processing - Special Issue on 'Advanced Ground-Penetrating Radar Signal-Processing Techniques,' vol. 132, pp. 306-318, Mar. 2017. [5] M. Salucci, L. Poli, N. Anselmi and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1305-1317, Mar. 2017. [6] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics - A review," IEEE Antennas Propag. Mag., pp. 224-238, vol. 57, no. 1, Feb. 2015. [7] A. Massa and F. Texeira, Guest-Editorial: Special Cluster on Compressive Sensing as Applied to Electromagnetics, IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1022-1026, 2015. [8] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4889-4900, Nov. 2015. [9] G. Oliveri, N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014. [10] T. Moriyama, G. Oliveri, M. Salucci, and T. Takenaka, "A multi-scaling forward-backward time-stepping method for microwave imaging," IEICE Electron. Expr., vol. 11, no. 16, pp. 1-12, Aug. 2014. [11] T. Moriyama, M. Salucci, M. Tanaka, and T. Takenaka, "Image reconstruction from total electric field data with no information on the incident field," J. Electromagnet. Wave., vol. 30, no. 9, pp. 1162-1170, 2016. [12] F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, "Sparse scatterers imaging through approximated multi-task compressive sensing strategies," Microw. Opt. Technol. Lett., vol. 55, no. 7, pp. 1553-1557, Jul. 2013. [13] M. Salucci, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 11, pp. 6818-6832, Nov. 2016. [14] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function bayesian compressing sensing approach," J. Opt. Soc. Am. A, vol. 30, no. 6, pp. 1261-1272, Jun. 2013. [15] M. Donelli, D. Franceschini, P. Rocca, and A. Massa, "Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization," IEEE Trans. Geosci. Remote Sensing, vol. 47, no. 5, pp. 1467-1481, May 2009. citation: Salucci, M. and Poli, L. and Anselmi, N. and Massa, A. (2017) Robust Multi-Frequency GPR Microwave Imaging through Multi-Scaling Particle Swarm Optimization. Technical Report. University of Trento. document_url: http://www.eledia.org/students-reports/737/1/Robust%20Multi%E2%80%90Frequency%20GPR%20Microwave%20Imaging%20through%20Multi%E2%80%90ScalinG%20Particle%20Swarm%20Optimization.pdf