eprintid: 734 rev_number: 9 eprint_status: archive userid: 4 dir: disk0/00/00/07/34 datestamp: 2017-06-08 13:16:17 lastmod: 2018-02-26 14:52:07 status_changed: 2017-06-08 13:16:17 type: monograph metadata_visibility: show creators_name: Salucci, M. creators_name: Poli, L. creators_name: Anselmi, N. creators_name: Massa, A. title: Robust Multi-Frequency Subsurface Imaging through Evolutionary Optimization ispublished: pub subjects: AWC subjects: MEA full_text_status: public monograph_type: technical_report keywords: Ground Penetrating Radar (GPR), Inverse Scattering (IS), Multi-Frequency (MF), Particle Swarm Optimization (PSO), Stochastic Optimization, Wide-band Data, Iterative Multi Scaling Approach (IMSA) abstract: In this work, an innovative stochastic method for subsurface microwave imaging is presented. The proposed approach solves the subsurface inverse scattering problem by jointly processing multiple frequency components of the measured wide-band ground penetrating radar (GPR) data. Moreover, an iterative multi-zooming approach is adopted, in order to reduce the ratio between problem unknowns and informative data, as well as to adaptively enforce increased resolutions in correspondence with the identified regions of interest. The minimization of the multi-frequency (MF) cost function is performed at each multi-resolution step by means of a customized particle swarm optimization (PSO) algorithm, thanks to its capability of escaping from local minima, corresponding to false solutions of the inverse scattering problem. Some numerical results are shown, in order to assess the performance of the developed MF-IMSA-PSO method in retrieving buried targets having different shape and composition, as well as to compare it to a deterministic implementation within the same framework (i.e., the MF-IMSA-CG). date: 2017 publisher: University of Trento referencetext: [1] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Probl., vol. 25, pp. 1-41, Dec. 2009. [2] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., vol. 53, no. 1, pp. 38-49, Feb. 2011. [3] M. Salucci, G. Oliveri, and A. Massa, "GPR prospecting through an inverse scattering frequency-hopping multi-focusing approach," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6573-6592, Dec. 2015. [4] M. Salucci, L. Poli, and A. Massa, "Advanced multi-frequency GPR data processing for non-linear deterministic imaging," Signal Processing - Special Issue on 'Advanced Ground-Penetrating Radar Signal-Processing Techniques,' vol. 132, pp. 306-318, Mar. 2017. [5] M. Salucci, L. Poli, N. Anselmi and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1305-1317, Mar. 2017. [6] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics - A review," IEEE Antennas Propag. Mag., pp. 224-238, vol. 57, no. 1, Feb. 2015. [7] A. Massa and F. Texeira, Guest-Editorial: Special Cluster on Compressive Sensing as Applied to Electromagnetics, IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1022-1026, 2015. [8] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4889-4900, Nov. 2015. [9] G. Oliveri, N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014. [10] T. Moriyama, G. Oliveri, M. Salucci, and T. Takenaka, "A multi-scaling forward-backward time-stepping method for microwave imaging," IEICE Electron. Expr., vol. 11, no. 16, pp. 1-12, Aug. 2014. [11] T. Moriyama, M. Salucci, M. Tanaka, and T. Takenaka, "Image reconstruction from total electric field data with no information on the incident field," J. Electromagnet. Wave., vol. 30, no. 9, pp. 1162-1170, 2016. [12] F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, "Sparse scatterers imaging through approximated multi-task compressive sensing strategies," Microw. Opt. Technol. Lett., vol. 55, no. 7, pp. 1553-1557, Jul. 2013. [13] M. Salucci, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 11, pp. 6818-6832, Nov. 2016. [14] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function bayesian compressing sensing approach," J. Opt. Soc. Am. A, vol. 30, no. 6, pp. 1261-1272, Jun. 2013. [15] M. Donelli, D. Franceschini, P. Rocca, and A. Massa, "Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization," IEEE Trans. Geosci. Remote Sensing, vol. 47, no. 5, pp. 1467-1481, May 2009. citation: Salucci, M. and Poli, L. and Anselmi, N. and Massa, A. (2017) Robust Multi-Frequency Subsurface Imaging through Evolutionary Optimization. Technical Report. University of Trento. document_url: http://www.eledia.org/students-reports/734/1/Robust%20Multi%E2%80%90Frequency%20Subsurface%20Imaging%20through%20Evolutionary%20Optimization.pdf