eprintid: 732 rev_number: 13 eprint_status: archive userid: 4 dir: disk0/00/00/07/32 datestamp: 2017-05-25 07:22:11 lastmod: 2025-09-01 17:27:16 status_changed: 2017-05-25 07:22:11 type: monograph metadata_visibility: show creators_name: Salucci, M. creators_name: Poli, L. creators_name: Anselmi, N. creators_name: Massa, A. title: Multi-Frequency Multi-Resolution Stochastic Optimization for GPR Microwave Imaging ispublished: pub subjects: AWC subjects: MEA full_text_status: public monograph_type: technical_report keywords: Ground Penetrating Radar (GPR), Inverse Scattering (IS), Frequency-Hopping (FH), Multi-Frequency (MF), Particle Swarm Optimization (PSO), Stochastic Optimization, Wide-band Data, Iterative Multi-Scaling Approach (IMSA) abstract: In this work, the retrieval of the dielectric characteristics of unknown objects buried in a lossy half-space is dealt with. An innovative multi-resolution multi-frequency (MF) stochastic microwave imaging technique is proposed to solve the buried inverse scattering problem by processing wide-band ground penetrating radar (GPR) data. The proposed MF-IMSA-PSO method exploits a particle swarm optimization (PSO)-based algorithm to find the global optimum of the MF cost function measuring the mismatch between available and retrieved data at a fixed set of frequencies. Such a stochastic solver is nested within the iterative multi-scaling approach (IMSA) in order to reduce the ratio between problem unknowns and informative data, as well as to adaptively enforce increasing resolutions only within the regions of interest in which the scatterers have been detected. A preliminary numerical validation is shown, in order to assess the robustness of the developed approach with respect to noise, as well as to compare its performance to state-of-the-art competitive approaches. date: 2017 publisher: University of Trento referencetext: [1] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," Inverse Probl., vol. 25, no. 12, pp. 1-41, 2009 (DOI: 10.1088/0266-5611/25/12/123003). [2] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., vol. 53, no. 1, pp. 38-49, Feb. 2011 (DOI: 10.1109/MAP.2011.5773566). [3] M. Salucci, G. Oliveri, and A. Massa, "GPR prospecting through an inverse scattering frequency-hopping multi-focusing approach," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6573-6592, Dec. 2015 (DOI: 10.1109/TGRS.2015.2444391). [4] M. Salucci, L. Poli, and A. Massa, "Advanced multi-frequency GPR data processing for non-linear deterministic imaging," Signal Processing - Special Issue on 'Advanced Ground-Penetrating Radar Signal-Processing Techniques,' vol. 132, pp. 306-318, Mar. 2017 (DOI: 10.1016/j.sigpro.2016.06.019). [5] M. Salucci, L. Poli, N. Anselmi and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1305-1317, Mar. 2017 (DOI: 10.1109/TGRS.2016.2622061). [6] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics - A review," IEEE Antennas Propag. Mag., pp. 224-238, vol. 57, no. 1, Feb. 2015 (DOI: 10.1109/MAP.2015.2397092). [7] A. Massa and F. Texeira, Guest-Editorial: Special Cluster on Compressive Sensing as Applied to Electromagnetics, IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1022-1026, 2015 (DOI: 10.1109/LAWP.2015.2425011). [8] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4889-4900, Nov. 2015 (DOI: 10.1109/TAP.2015.2444423). [9] G. Oliveri, N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014 (DOI: 10.1109/TAP.2014.2344673). [10] T. Moriyama, G. Oliveri, M. Salucci, and T. Takenaka, "A multi-scaling forward-backward time-stepping method for microwave imaging," IEICE Electron. Expr., vol. 11, no. 16, pp. 1-12, Aug. 2014 (DOI: 10.1587/elex.11.20140578). [11] T. Moriyama, M. Salucci, M. Tanaka, and T. Takenaka, "Image reconstruction from total electric field data with no information on the incident field," J. Electromagnet. Wave., vol. 30, no. 9, pp. 1162-1170, 2016 (DOI: 10.1080/09205071.2016.1182876). [12] F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, "Sparse scatterers imaging through approximated multi-task compressive sensing strategies," Microw. Opt. Technol. Lett., vol. 55, no. 7, pp. 1553-1557, Jul. 2013 (DOI: 10.1002/mop.27612). [13] M. Salucci, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 11, pp. 6818-6832, Nov. 2016 (DOI: 10.1109/TGRS.2016.2591439). [14] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function bayesian compressing sensing approach," J. Opt. Soc. Am. A, vol. 30, no. 6, pp. 1261-1272, Jun. 2013 (DOI: 10.1364/JOSAA.30.001261). [15] M. Donelli, D. Franceschini, P. Rocca and A. Massa, "Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1467-1481, May 2009 (DOI: 10.1109/TGRS.2008.2005529). citation: Salucci, M. and Poli, L. and Anselmi, N. and Massa, A. (2017) Multi-Frequency Multi-Resolution Stochastic Optimization for GPR Microwave Imaging. Technical Report. University of Trento. document_url: http://www.eledia.org/students-reports/732/1/Multi%E2%80%90Frequency_Multi%E2%80%90Resolution_Stochastic_Optimization_for_GPR_Microwave_Imaging.v2.pdf