eprintid: 46 rev_number: 20 eprint_status: archive userid: 4 dir: disk0/00/00/00/46 datestamp: 2013-06-13 12:37:57 lastmod: 2013-11-05 08:51:03 status_changed: 2013-06-13 12:37:57 type: thesis metadata_visibility: show creators_name: Zambiasi, C. title: Design Of An Optimization Tool For The Management Of The Electrical Network Through Game Theory ispublished: pub subjects: TK full_text_status: public abstract: La crescente domanda di energia a livello globale ha portato alla convergenza di interessi scientifici, industriali e politici allo scopo di migliorare il rendimento e l'efficienza delle reti di trasporto ed utilizzazione dell'energia elettrica. In questo ambito, tutte le tecnologie dell'informazione e della comunicazione (ICT) svolgono un ruolo cruciale al fine di trasformare e cambiare radicalmente ogni fase del processo di accumulazione, trasporto ed utilizzazione dell'energia. Tutti i dispositivi connessi in una SMART GRID energetica diventano dunque parte attiva di un sistema di controllo capillare che include le grandi centrali di generazione di energia, i singoli utilizzatori, l'illuminazione pubblica, i piccoli sistemi di generazione quali impianti da fonti rinnovabili di piccole dimensioni, cogeneratori. La SMART GRID poggia dunque su una rete di comunicazione estesa, distribuita e sensibile che fornisce sia l'informazione sullo stato della rete ed è grado di proporre nuovi servizi e valore aggiunto rispetto ad una rete tradizionale. Conseguentemente, anche gli utilizzatori finali di energia, che nella rete tradizionale svolgono un semplice ruolo passivo, diventano parte attiva della rete SMART e con il loro comportamento ne influenzano prestazioni ed efficienza. Il progetto propone di implementare il sistema di programmazione nel consumo dell'energia descritto in letteratura che è basato sulla cosiddetta 'Teoria dei Giochi'. In dettaglio, esso considera una ipotetica SMART GRID in cui un unica fonte di energia è condivisa da più utenti ognuno dei quali possiede un dispositivo capace di programmare il proprio consumo di energia (ECS - Energy Consumption Scheduler) e che risulta connesso sia alla rete di trasmissione dell'energia che alla rete di trasmissione dati. Tali dispositivi interagiscono tra loro all'interno della rete utilizzando un algoritmo il cui scopo è quello di trovare il programma di consumo dell'energia ottimo per ciascun utente, mentre a livello di sistema nella sua globalità l'obiettivo è quello di minimizzare il costo dell'energia utilizzata. Mediante l'utilizzo di un sistema di incentivi basato sul prezzo dell'energia ogni utente è spinto volontariamente a cooperare con gli altri utenti e seguendo le regole descritte nella Teoria dei Giochi si dimostra come la soluzione di un problema locale (scegliere il programma dal minor costo per ciascun utente) risulta essere anche la soluzione ottima per il sistema nella sua globalità, cioè il costo totale dell'energia utilizzata dal sistema è minimo. Competenze Acquisite al Termine del Progetto: 1. Nozioni base sulla SMART Grid Energetica; 2. Nozioni base sulla Teoria dei Giochi; 3. Programmazione avanzata in C++ - Utilizzo di Librerie non standard; 4. Ottimizzazione di funzioni convesse (Convex Programming) Interior Point Method. date: 2013 date_type: published institution: University of Trento department: ELEDIA Research Center@DISI thesis_type: masters referencetext: [1] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Problems - 25 th Year Special Issue of Inverse Problems, Invited Topical Review, vol. 25, pp. 1-41, Dec. 2009. [2] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., vol. 53, no. 1, pp. 38-49, Feb. 2011. [3] M. Donelli, D. Franceschini, P. Rocca, and A. Massa, "Three-dimensional microwave imaging problems solved through an efficient multi-scaling particle swarm optimization," IEEE Trans. Geosci. Remote Sensing, vol. 47, no. 5, pp. 1467-1481, May 2009. [4] M. Benedetti, G. Franceschini, R. Azaro, and A. Massa, "A numerical assessment of the reconstruction effectiveness of the integrated GA-based multicrack strategy," IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 271-274, 2007. [5] G. Oliveri, M. Donelli, and A. Massa, "Genetically-designed arbitrary length almost difference sets," Electronics Letters, vol. 5, no. 23, pp. 1182-1183, Nov. 2009. [6] P. Rocca, L. Manica, and A. Massa, "An improved excitation matching method based on an ant colony optimization for suboptimal-free clustering in sum-difference compromise synthesis," IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2297-2306, Aug. 2009. [7] P. Rocca, L. Manica, and A. Massa, "Ant colony based hybrid approach for optimal compromise sum-difference patterns synthesis," Microwave Opt. Technol. Lett., vol. 52, no. 1, pp. 128-132, Jan. 2010. [8] P. Rocca, L. Manica, and A. Massa, "Hybrid approach for sub-arrayed monopulse antenna synthesis," Electronics Letters, vol. 44, no. 2, pp. 75-76, Jan. 2008. [9] P. Rocca, L. Manica, F. Stringari, and A. Massa, "Ant colony optimization for tree-searching based synthesis of monopulse array antenna," Electronics Letters, vol. 44, no. 13, pp. 783-785, Jun. 19, 2008. [10] F. Viani, M. Salucci, F. Robol, and A. Massa, "Multiband fractal Zigbee/WLAN antenna for ubiquitous wireless environments," Journal of Electromagnetic Waves and Applications, vol. 26, no. 11-12, pp. 1554-1562. 2012. [11] F. Viani, M. Salucci, F. Robol, G. Oliveri, and A. Massa, "Design of a UHF RFID/GPS fractal antenna for logistics management," Journal of Electromagnetic Waves and Applications, vol. 26, pp. 480-492, 2012. [12] L. Lizzi, R. Azaro, G. Oliveri, and A. Massa, "Multiband fractal antenna for wireless communication systems for emergency management," Journal of Electromagnetic Waves and Applications, vol. 26, no. 1, pp. 1-11, 2012. [13] R. Azaro, E. Zeni, P. Rocca, and A. Massa, "Innovative design of a planar fractal-shaped GPS/GSM/Wi-Fi antenna," Microwave Opt. Technol. Lett., vol. 50, no. 3, pp. 825-829, Mar. 2008. [14] R. Azaro, F. Viani, L. Lizzi, E. Zeni, and A. Massa, "A monopolar quad-band antenna based on a Hilbert self-affine pre-fractal geometry," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 177-180, 2009. [15] R. Azaro, L. Debiasi, E. Zeni, M. Benedetti, P. Rocca, and A. Massa, "A hybrid prefractal three-band antenna for multi-standard mobile wireless applications," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 905-908, 2009. [16] L. Lizzi and A. Massa, "Dual-band printed fractal monopole antenna for LTE applications," IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 760-763, 2011. [17] L. Lizzi and G. Oliveri, "Hybrid design of a fractal-shaped GSM/UMTS antenna," Journal of Electromagnetic Waves and Applications, vol. 24, no. 5/6, pp. 707-719, Mar. 2010. [18] R. Azaro, E. Zeni, P. Rocca, and A. Massa, "Synthesis of a Galileo and Wi-Max three-band fractal-eroded patch antenna," IEEE Antennas Wireless Propag. Lett. , vol. 6, pp. 510-514, 2007. [19] F. Viani, "Dual-band sierpinski pre-fractal antenna for 2.4GHz-WLAN and 800MHz-LTE wireless devices," Progress In Electromagnetics Research C, vol. 35, pp. 63-71, 2013. [20] E. Zeni, R. Azaro, P. Rocca, and A. Massa, "Quad-band patch antenna for Galileo and Wi-Max services," Electronics Letters, vol. 43, no. 18, pp. 960-962, Aug. 2007. [21] L. Lizzi, F. Viani, E. Zeni, and A. Massa, "A DVBH/GSM/UMTS planar antenna for multimode wireless devices," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 616-619, 2009. [22] L. Lizzi, F. Viani, R. Azaro, and A. Massa, "A PSO-driven spline-based shaping approach for ultra-wideband (UWB) antenna synthesis," IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2613-2621, Aug. 2008. [23] L. Lizzi, R. Azaro, G. Oliveri, and A. Massa, "Printed UWB antenna operating over multiple mobile wireless standards," IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1429-1432, 2011. [24] L. Lizzi, F. Viani, R. Azaro, and A. Massa, "Design of a miniaturized planar antenna for FCC-UWB communication systems," Microwave Opt. Technol. Lett., vol. 50, no. 7, pp. 1975-1978, Jul. 2008. [25] F. Viani, L. Lizzi, R. Azaro, and A. Massa, "A miniaturized UWB antenna for wireless dongle devices," IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 714-717, 2008. [26] F. Viani, L. Lizzi, R. Azaro, and A. Massa, "Spline-shaped ultra-wideband antenna operating in the ECC released frequency spectrum," Electronics Letters, vol. 44, no. 1, pp. 7-8, Jan. 2008. [27] L. Lizzi, F. Viani, R. Azaro, and A. Massa, "Optimization of a spline-shaped UWB antenna by PSO," IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 182-185, 2007. [28] L. Lizzi, G. Oliveri, and A. Massa, "A time-domain approach to the synthesis of UWB antenna systems," Progress in Electromagnetic Research, vol. 122, pp. 557-575, 2012. [29] L. Lizzi, G. Oliveri, and A. Massa, "Planar monopole UWB antenna with UNII1/UNII2 WLAN-band notched characteristics," Progress in Electromagnetic Research B, vol. 25, pp. 277-292, 2010. [30] L. Lizzi, F. Viani, and A. Massa, "Dual-band spline-shaped PCB antenna for Wi-Fi applications," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 616-619, 2009. [31] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Adaptive nulling in time-modulated linear arrays with minimum power losses," IET Microwaves, Antennas & Propagation, vol. 5, no. 2, pp. 157-166, 2011. [32] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Adaptive nulling in time-varying scenarios through time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 101-104, 2012. [33] M. Benedetti, G. Oliveri, P. Rocca, and A. Massa, "A fully-adaptive smart antenna prototype: ideal model and experimental validation in complex interference scenarios," Progress in Electromagnetic Research, PIER 96, pp. 173-191, 2009. [34] M. Benedetti, R. Azaro, and A. Massa, "Memory enhanced PSO-based optimization approach for smart antennas control in complex interference scenarios," IEEE Trans. Antennas Propag., vol. 56, no. 7, pp. 1939-1947, Jul. 2008. [35] M. Benedetti, R. Azaro, and A. Massa, "Experimental validation of a fully-adaptive smart antenna prototype," Electronics Letters, vol. 44, no. 11, pp. 661-662, May 2008. [36] R. Azaro, L. Ioriatti, M. Martinelli, M. Benedetti, and A. Massa, "An experimental realization of a fully-adaptive smart antenna," Microwave Opt. Technol. Lett., vol. 50, no. 6, pp. 1715-1716, Jun. 2008. [37] M. Donelli, R. Azaro, L. Fimognari, and A. Massa, "A planar electronically reconfigurable Wi-Fi band antenna based on a parasitic microstrip structure," IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 623-626, 2007. [38] M. Benedetti, R. Azaro, D. Franceschini, and A. Massa, "PSO-based real-time control of planar uniform circular arrays," IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 545-548, 2006. [39] F. Viani, L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, vol. 24, no. 5/6, pp. 993-1003, 2010. [40] E. T. Bekele, L. Poli, M. D'Urso, P. Rocca, and A. Massa, "Pulse-shaping strategy for time modulated arrays - Analysis and design," IEEE Trans. Antennas Propag., in press. [41] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "A multi-stage approach for the synthesis of sub-arrayed time modulated linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3246-3254, Sep. 2011. [42] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Harmonic beamforming in time-modulated linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2538-2545, Jul. 2011. [43] L. Poli, P. Rocca, L. Manica, and A. Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization," IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1408-1411, Apr. 2010. [44] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Adaptive nulling in time-varying scenarios through time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 101-104, 2012. [45] P. Rocca, L. Poli, and A. Massa, "Instantaneous directivity optimization in time-modulated array receivers," IET Microwaves, Antennas & Propagation, vol. 6, no. 14, pp. 1590-1597, Nov. 2012. [46] P. Rocca, L. Poli, L. Manica, and A. Massa, "Synthesis of monopulse time-modulated planar arrays with controlled sideband radiation," IET Radar, Sonar & Navigation, vol. 6, no. 6, pp. 432-442, 2012. [47] L. Poli, P. Rocca, and A. Massa, "Sideband radiation reduction exploiting pattern multiplication in directive time-modulated linear arrays," IET Microwaves, Antennas & Propagation, vol. 6, no. 2, pp. 214-222, 2012 [48] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Adaptive nulling in time-modulated linear arrays with minimum power losses," IET Microwaves, Antennas & Propagation, vol. 5, no. 2, pp. 157-166, 2011 [49] L. Poli, P. Rocca, L. Manica, and A. Massa, "Time modulated planar arrays - Analysis and optimization of the sideband radiations," IET Microwaves, Antennas & Propagation, vol. 4, no. 9, pp. 1165-1171, 2010. [50] L. Poli, P. Rocca, L. Manica, and A. Massa, "Pattern synthesis in time-modulated linear arrays through pulse shifting," IET Microwaves, Antennas & Propagation, vol. 4, no. 9, pp. 1157-1164, 2010. [51] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Synthesis of time-modulated planar arrays with controlled harmonic radiations," Journal of Electromagnetic Waves and Applications, vol. 24, no. 5/6, pp. 827-838, 2010. [52] L. Manica, P. Rocca, L. Poli, and A. Massa, "Almost time-independent performance in time-modulated linear arrays," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 843-846, 2009. [53] P. Rocca, L. Manica, L. Poli, and A. Massa, "Synthesis of compromise sum-difference arrays through time-modulation," IET Radar, Sonar & Navigation, vol. 3, no. 6, pp. 630-637, 2009. citation: Zambiasi, C. (2013) Design Of An Optimization Tool For The Management Of The Electrical Network Through Game Theory. Masters thesis, University of Trento. document_url: http://www.eledia.org/students-reports/46/1/Abstract.A398.pdf