eprintid: 403 rev_number: 6 eprint_status: archive userid: 5 dir: disk0/00/00/04/03 datestamp: 2011-03-28 lastmod: 2013-07-02 11:34:52 status_changed: 2013-07-02 11:34:52 type: techreport metadata_visibility: show item_issues_count: 0 creators_name: Franceschini, Davide creators_name: Donelli, Massimo creators_name: Franceschini, Gabriele creators_name: Massa, Andrea title: Iterative Image Reconstruction of Two-dimensional Scatterers Illuminated by TE Waves ispublished: pub subjects: TU full_text_status: public keywords: Electromagnetic scattering , inverse problems , microwave imaging , multiresolution technique , transverse electric (TE) illumination abstract: The iterative reconstruction of unknown objects from TE-measured scattered field data is presented. The paper investigates the performance of the iterative multiscaling approach (IMSA) in exploiting transverse electric (TE) illuminations. As a matter of fact, in these conditions, the problem turns out to be more complicated than the tranverse magnetic (TM) scalar one in terms of mathematical model as well as computational costs. However, it is expected that more information on the scenario under test can be drawn from scattered data. Therefore, this study is aimed at verifying whether the TE case can provide additional information on the scenario under test (compared to the TM illumination) and how such an enhancement can be suitably exploited by the IMSA for improving the reconstruction accuracy of the retrieval process. Such an analysis will be carried out by means of a set of numerical experiments concerned with dielectric and metallic targets in single- and multiple-objects configurations. Synthetic as well as experimental data will be dealt with. (c) 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. date: 2006-04 date_type: published institution: University of Trento department: informaticat refereed: TRUE referencetext: [1] J. C. Bolomey and C. Pichot, "Microwave tomography: from theory to practical imaging systems"; Int. J. Imag. Sys. Tech., vol. 2, pp. 144-156, 1990. [2] J. C. Bolomey, "Recent European developments in active microwave imaging for industrial, scientific, and medical applications"; IEEE Trans. MicrowaveTheory Tech., vol. 37, pp. 2109-2117, Jun. 1989. [3] J. Ch. Bolomey, "Microwave imaging techniques for NDT and NDE"; Proc. Training Workshop on Advanced Microwave NDT/NDE Techniques,Supelec/CNRS, Paris, Sep. 7-9, 1999. [4] A. Massa and S. Caorsi, Special Issue on "Microwave imaging and inverse scattering techniques"; J. Electromagn. Waves Applicat., vol. 17, Apr. 2003. [5] R. M. Lewis, "Physical optics inverse diffraction"; IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969. [6] T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders"; IEEE Trans. Antennas Propagat.,vol. 37, pp. 235-244, Feb. 1989. [7] J. B. Keller, "Accuracy and validity of Born and Rytov approximations"; J. Opt. Soc. Am., vol. 6, pp. 1003-1004, 1969. [8] M. Stanley, A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography"; IEEE Trans. Microwave Theory Tech., vol.32, pp. 860-874, Aug. 1984. [9] T. Isernia, V. Pascazio, and R. Pierri, "A nonlinear estimation method in tomographic imaging"; IEEE Trans. Geosci. Remote Sensing, vol. 35, pp.910-923, Jul. 1997. [10] M. Lambert, D. Lesselier, and B. J. Kooij, "The retrieval of a buried cylindrical obstacle by a constrained modified gradient method in the H-polarizationcase and for Maxwellian materials"; Inverse Problems, vol. 14, pp. 1265-1283, 1998. [11] A. Massa, Genetic algorithm based techniques for 2D microwave inverse scattering. In Recent Research Developments in Microwave Theory andTechniques, Ed. S. G. Pandalai, Transworld Research Network Press, Trivandrum, India, 2002. [12] W. C. Chew and G. P. Otto, "Microwave imaging of multiple conducting cylinders using local shape functions"; IEEE Microwave Guided Wave Lett.,vol. 2, pp. 284-286, Jul. 1992. [13] K. Belkebir, R. E. Kleinmann, and C. Pichot, "Microwave imaging - Location and shape reconstruction from multifrequency scattering data"; IEEETrans. Microwave Theory Tech., vol. 45, pp. 469-476, Apr. 1997. [14] S. Caorsi, A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEETrans. Geoscic Remote Sensing, vol. 38, pp. 1697-1708, Jul. 2000. [15] N. Joachimowicz, C. Pichot, and J.-P. Hugonin, "Inverse scattering: An iterative numerical method for electromagnetic imaging"; IEEE Trans. AntennasPropagat., vol. 39, pp. 1742-1752, Dec. 1991. [16] A. Abubakar, P. M. van den Berg, and J. J. Mallorqui, "Imaging of biomedical data using a multiplicative regularized contrast source inversion method";IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1761-1771, Jul. 2002. [17] A. Abubakar and P. M. van den Berg, "Three-dimensional nonlinear inversion in crosswell electrode logging"; Radio Sci., vol. 4, pp. 989-1004, 1998. [18] F. Li, Q. H. Liu, and L.-P. Song, "Three dimensional reconstruction of objects buried in layered media using Born and distorted Born iterative methods"; IEEE Trans. Geosci. Remote Sensing, vol. 1, pp. 107-111, Apr. 2004. [19] G. Franceschini, D. Franceschini, and A. Massa, "Full-Vectorial Three Dimensional Microwave Imaging trough an Iterative Multi-Scaling Strategy - Apreliminary Assessment"; IEEE Geosci. Remote Sensing Lett., vol. 2, pp. 428-432, Oct. 2005 [20] B. J. Kooij and P. M. van den Berg, "Nonlinear Inversion in TE Scattering"; IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1704-1711, Nov. 1998. [21] C.-P. Chou and Y.-W. Kiang, "Inverse Scattering of Dielectric Cylinders by a cascade TE-TM method"; IEEE Trans. Microwave Theory Tech., vol. 47,pp. 1923-1930, Oct. 1999. [22] J. Ma, W. C. Chew, C.-C. Lu, and J. Song, "Image reconstruction from TE scattering data using equation of strong permittivity fluctuation"; IEEE Trans.Antennas Propagat., vol. 48, pp. 860-867, Jun. 2000. [23] O. M. Bucci and G. Franceschetti, "On the degrees of freedom of scattered fields"; IEEE Trans. Antennas Propagat., vol. 37, pp. 918-926, Jul. 1989. [24] E. L. Miller and A. S. Willsky, "A multiscale, statistically based inversion scheme for linearized inverse scattering problems"; IEEE Trans. Geosci.Remote Sensing, vol. 34, pp. 346-357, Mar. 1996. [25] O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, "Wavelets in non-linear inverse scattering"; Proc. Geoscience Remote Sensing Symp., IGARSS-2000,vol. 7, pp. 3130-3132. [26] S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging"; IEEE Trans.Microwave Theory Tech., vol. 51, pp. 1162-1173, Apr. 2003. [27] S. Caorsi, M. Donelli, and A. Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method"; IEEETrans. Microwave Theory Tech., vol. 52, pp. 1217-1228, Apr. 2004. [28] A. Baussard, E. L. Miller, and D. Lesselier, "Adaptive multiscale approach for 2D microwave tomography"; URSI - International Symposium onElectromagnetic Theory, Pisa, Italia, pp. 1092-1094, May 2004. [29] A. Baussard, E. L. Miller, and D. Lesselier, "Adaptive multiscale reconstruction of buried objects," Inverse Problems, Special section on "Electromagneticcharacterization of buried obstacles", W.C. Chew and D. Lesselier eds., vol. 20, pp. S1-S15, 2004. [30] T. Isernia, V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique"; IEEE Trans. Geosci. Remote Sensing, vol. 39, pp.1596-1607, Jul. 2001. [31] O. M. Bucci and T. Isernia, "Electromagnetic inverse scattering : Retrievable information and measurement strategies"; Radio Sci., vol. 32, pp. 2123-2137,1997. [32] M. Donelli, and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectricscatterers"; IEEE Trans. Microwave Theory Tech., vol. 53, no. 5, pp. 1761-1776, May 2004. [33] C. Ramananjaona, M. Lambert and D. Lesselier"Shape inversion from TM and TE real data by controlled evolution of level sets"; Inverse Problems,vol. 17, pp. 1585-1595, 2001. [34] K. Belkebir and M. Saillard, Special section: "Testing Inversion Algorithms against Experimental Data"; Inverse Problems, vol. 17, pp. 1565-1702, Dec.2001. [35] P. M. Van den Berg, M. G. Coté and R. E. Kleinmann, "Blind" shape reconstruction from experimental data"; IEEE Trans. Antennas Propagat., vol.43, pp. 1389-1396, Dec. 1995. [36] R. F. Bloemenkamp, A. Abubakar, and P. M. Van den Berg, "Inversion of experimental multi-frequency data using the contrast source inversion method,Inverse Problems", vol. 17, pp. 1611-1622, Dec. 2001. citation: Franceschini, Davide and Donelli, Massimo and Franceschini, Gabriele and Massa, Andrea (2006) Iterative Image Reconstruction of Two-dimensional Scatterers Illuminated by TE Waves. [Technical Report] document_url: http://www.eledia.org/students-reports/403/1/DISI-11-081.R102.pdf