eprintid: 354 rev_number: 6 eprint_status: archive userid: 5 dir: disk0/00/00/03/54 datestamp: 2011-04-11 lastmod: 2013-07-03 08:35:18 status_changed: 2013-07-03 08:35:18 type: techreport metadata_visibility: show item_issues_count: 0 creators_name: Caramanica, Federico creators_name: Oliveri, Giacomo title: An innovative multi-source strategy for enhancing the reconstruction capabilities of inverse scattering techniques ispublished: pub subjects: TU full_text_status: public abstract: Active microwave imaging techniques are aimed at reconstructing an unknown region under test by means of suitable inversion algorithms starting from the measurement of the scattered electromagnetic field. Within such a framework, this paper focuses on an innovative strategy that fully exploits the information arising from the illumination of the investigation domain with different configurations as well as radiation patterns of the probing sources. The proposed approach can be easily integrated with multiview techniques and, unlike multifrequency methods, it does not require additive a-priori information on the dielectric nature of the scatterer under test. A large number of numerical simulations concerned with 2D geometries confirms the effectiveness of the inversion strategy as well as its robustness with respect to noise on data. Moreover, the results of a comparative study with single-source methodologies further point out the advantages and potentialities of the new approach. “(c) The Electromagnetics Academy - The final version of this article is available at the url of the journal PIER (Progress In Electromagnetics Research): http://www.jpier.org/PIER/pier.php?paper=09120803 date: 2011-01 date_type: published institution: University of Trento department: informaticat refereed: TRUE referencetext: [1] A. Abubakar, P. M. Van den Berg, and J. T. Fokkema, "Time-lapse TM-polarizationelectromagnetic imaging," Subsurf. Sensing Tech. Applic., vol. 4, pp. 117-135, 2003. [2] Y. Yu, T. Yu, and L. Carin, "Three-dimensional inverse scattering of a dielectrictarget embedded in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, vol.42, pp. 957-973, 2004. [3] S. R. H. Hoole, S. Subramaniam, R. Saldanha, J.-L. Coulomb, and J.-C- Sabon-nadiere, "Inverse problem methodology and nite elements in the identifications ofcracks, sources, materials, and their geometry in inaccessible locations," IEEE Trans.Magn., vol. 27, pp. 3433-3443, 1991. [4] S. Caorsi, M. Donelli, M. Pastorino, A. Randazzo, and A. Rosani, "Microwave imagingfor nondestructive evaluation of Civil structures," The Journal of the British Instituteof Non-Destructive Testing, vol. 47, pp. 11-14, 2005. [5] J. Ch. Bolomey. Frontiers in Industrial Process Tomography, Engineering Founda-tion,1995. [6] J. Ch. Bolomey, "Recent European developments in active microwave imaging for in-dustrial, scientic, and medical applications," IEEE Trans. Microwave Theory Tech.,vol. 37, pp. 2109-2117, 1991. [7] K. Louis, "Medical imaging: State of the art and future development," Inverse Prob-lems, vol. 8, pp. 709-738, 1992. [8] E. C. Fear and M. A. Stuchly, "Microwave detection of breast Cancer," IEEE Trans.Microwave Theory Tech., vol. 48, pp. 1854-1863, 2000. [9] S. Caorsi, A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging:potentialities and limitations of a stochastic optimization technique," IEEE Trans.Microwave Theory Tech., vol. 52, pp. 1909-1916, 2004. [10] D. Colton and R. Kress. Inverse acoustics and electromagnetic scattering theory.Berlin, Germany: Springer-Verlag, 1992. [11] M. Bertero and P. Boccacci. Introduction to Inverse Problem in Imaging. Philadel-phia: IoP Publishing, 1998. [12] A. M. Denisov. Elements of theory of inverse problems. Utrecht, The Netherlands:VSP, 1999. [13] K. Belkebir, J. M. Elissalt, J. M. Geffrin, and Ch. Pichot, "Newton-Kantorovich andmodied gradient - Inversion algorithms applied to Ipswich data," IEEE AntennasPropag. Mag., vol. 38, p. 41-43, 1996. [14] A. Franchois and Ch. Pichot, "Microwave imaging-complex permittivity reconstruc-tion with a Levenberg-Marquardt method," IEEE Trans. Antennas Propagat., vol.45, pp. 203 - 215, 1997. [15] A. Litman, D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binaryobstacle by Controlled evolution of level-set," Inverse Problems, vol. 14, pp. 685-706,1998. [16] M. Pastorino, A. Massa, and S. Caorsi, "A microwave inverse scattering technique forimage reconstruction based on a genetic algorithm," IEEE Trans. Instrum. Meas.,vol. 49, no. 3, pp. 573- 578, June 2000. [17] P. M. van den Berg and A. Abubakar, "Contrast source inversion method: state ofart," Progress In Electromagnetics Research, vol. 34, pp. 189-218, 2001. [18] S. Caorsi, M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a Particle Swarm algorithm," Journal Electromag-netic Waves Applications, vol. 18, pp. 481-494, 2004. [19] C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, "A two stepsinexact-Newton method for electromagnetic imaging of dielectric structures fromreal data," Inverse Problems, vol. 21, pp. 81-94, 2005. [20] S. Caorsi, G. L. Gragnani, and M. Pastorino, "An approach to microwave imagingusing a multiview moment method solution for a two-dimensional innite Cylinder,"IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1062-1067, 1991. [21] O. M. Bucci and T. Isernia, "Electromagnetic inverse scattering: retrievable informa-tion and measurements strategies," Radio Science, pp. 2123-2138, 1997. [22] K. Belkebir, R. Kleinman, and C. Pichot, "Microwave imaging - Location and shapereconstruction from multifrequency scattering data," IEEE Trans. Microwave TheoryTech., vol. 45, pp. 469-475, 1997. [23] O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, "Inverse scattering problemswith multifrequency data: reconstruction Capabilities and solution strategies," IEEETrans. Geosci. Remote Sensing, vol. 38, pp. 1749 - 1756, 2000. [24] M. El-Shenawee and E. L. Miller, "Multiple-incidence and multifrequency for prolereconstruction of random rough surfaces using the 3-D electromagnetic fast multipolemodel," IEEE Trans. Geosci. Remote Sensing, vol. 42, pp. 2499 - 2510, 2004. [25] D. Franceschini, M. Donelli, R. Azaro, and A. Massa, "Dealing with multifrequencyscattering data through the IMSA," IEEE Trans. Antennas Propagat., vol. 55, pp.2412 - 2417, 2007. [26] W. Zhang, L. Li, and F. Li, "Multifrequency imaging from intensity-only data us-ing the phaseless data distorted Rytov iterative method," IEEE Trans. AntennasPropagat., vol. 57, pp. 290-295, 2009. [27] W. C. Chew and J.-H. Lin, "A frequency-hopping approach for microwave imagingof large inhomogeneous bodies," IEEE Microwave Guided Wave Lett., vol. 5, pp.439-441, 1995. [28] I. T. Rekanos and T. D. Tsiboukis, "A finite element-based technique for microwaveimaging of two-dimensional objects," IEEE Trans. Instrum. Meas., vol. 49, pp. 234- 239, 2000. [29] S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, "A new methodology based onan iterative multi-scaling for microwave imaging," IEEE Trans. Microwave TheoryTech., vol. 51, pp. 1162-1173, 2003.20 [30] M. Donelli, D. Franceschini, P. Rocca, and A. Massa, "Three-dimensional microwaveimaging problems solved through an efficient multi-scaling particle swarm optimiza-tion," IEEE Trans. Geosci. Remote Sens., vol. 47, pp. 1467-1481, 2009. [31] J. Ma, W. C. Chew, C.-C. Lu, and J. Song, "Image reconstruction from TE scatter-ing data using equation of strong permittivity fluctuation," IEEE Trans. AntennasPropagat ., vol. 48, pp. 860-867, 2000. [32] D. Franceschini, M Donelli, G. Franceschini, and A. Massa, "Iterative image re-construction of two-dimensional scatterers illuminated by TE waves," IEEE Trans.Microwave Theory Techn., vol. 54, pp. 1484-1494, April 2006. [33] M. R. Hajihashemi and M. El-Shenawee, "TE Versus TM for the shape reconstructionof 2-D PEC targets using the level-set algorithm," IEEE Trans. Geosci. Remote Sens.,IEEE Trans. Geosci. Remote Sens. (in press). [34] M. Kaas, W. Rieger, C. Huber, G. Lehner, and W. M. Rucker, "Improvement ofinverse scattering results by Combining TM- and TE-polarized probing waves usingan iterative adaptation technique," IEEE Trans. Magn., vol. 35, pp. 1574-1577, 1999. [35] C.-P. Chou and Y.-W. Kiang, "Inverse scattering of dielectric Cylinders by a CascadedTE-TM method," IEEE Trans. Microwave Theory Techn., vol. 47, pp. 1923-1930,1999. [36] M. J. Akhtar and A. S. Omar, "An analytical approach for the inverse scatteringsolution of radially inhomogeneous spherical bodies using higher order TE and TMilluminations," IEEE Trans. Geosci. Remote Sens., vol. 42, pp. 1450-1455, 2004. [37] L. Poli and P. Rocca, "Exploitation of TE-TM scattering data for microwave imag-ing through the multi-scaling reconstruction strategy," Progress in ElectromagneticsResearch, vol. 99, pp. 245-260, 2009. [38] T. Isernia, V. Pascazio, and R. Pierri, "On the local minima in a tomographic imagingtechnique," IEEE Trans. Geosci. Remote Sensing, vol. 39, pp. 1596-1607, 2001. [39] D. S. Jones. The Theory of Electromagnetism. Oxford, U.K.: Pergamon Press, 1964. [40] J. H. Richmond, "Scattering by a dielectric Cylinder of arbitrary Cross section shape,IEEE Trans. Antennas Propagat., vol. 13, pp. 334-341, 1965. [41] S. Caorsi, A. Massa, and M. Pastorino, "Numerical assessment Concerning a focusedmicrowave diagnostic method for medical applications," IEEE Trans. Antennas Prop-agat., vol. 48, pp. 1815-1830, 2000. [42] R. V. Kohn and A. McKenney, "Numerical implementation of a variational methodfor electrical impedance tomography," Inverse Problems, vol. 6, pp. 389-414, 1990. [43] S. Caorsi, A. Massa, and M. Pastorino, "A Computational technique based on areal-coded genetic algorithm for microwave imaging purposes," IEEE Trans. Geosci.Remote Sens., vol. 38, pp. 1697-1708, 2000. [44] S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection ofdielectric scatterers using phaseless synthetic and real data and the memetic algo-rithm," IEEE Trans. Geosci. Remote Sens., vol. 41, pp. 2745-2753, 2003. [45] A. Massa, M. Pastorino, and A. Randazzo, "Reconstruction of two-dimensional buriedobjects by a hybrid differential evolution method," Inverse Problems, vol. 20, pp.135-150, 2004. [46] M. Donelli and A. Massa, "A Computational approach based on a particle swarm op-timizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans.Microwave Theory Techn., vol. 53, pp. 1761-1776, 2004. [47] A. Massa, "Genetic algorithm based techniques for 2D microwave inverse scattering,"in Recent Research Developments in Microwave Theory and Techniques, Ed. S. G.Pandalai, Transworld Research Network Press, Trivandrum, India, 2002. [48] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionaryoptimization as applied to inverse problems," Inverse Problems - 25th Year Spe-cial Issue of Inverse Problems, Invited Topical Review, vol. 25, doi: 10.1088/0266-5611/25/12/123003, 2009. [49] R. E. Kleinman and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," J. Comput. Appl. Math., vol. 42, pp. 17-35,1992. [50] P. M. van den Berg and R. E. Kleinman, "A Contrast source inversion method,"Inverse Problems, vol. 13, pp. 1607-1620, 1997. [51] S. Caorsi, M. Donelli, and A. Massa, "Detection, location and imaging of multiplescatterers by means of the iterative multiscaling method," IEEE Trans. MicrowaveTheory Techn., vol. 52, pp. 1217-1228, 2004. [52] S. Caorsi, M. Donelli, and A. Massa, "Analysis of the stability and robustness of theiterative multi-scaling approach for microwave imaging applications," Radioscience,vol. 39, doi: 10.1029/2003RS002966, 2004. [53] G. Franceschini, D. Franceschini, and A. Massa, "Full-vectorial three- dimensionalmicrowave imaging through the iterative multi-scaling strategy - A preliminary as-sessment," IEEE Geosci. Remote Sens. Lett., vol. 2, pp. 428-432, 2005. [54] M. Donelli, G. Franceschini, A. Martini, and A. Massa, "An integrated multi-scalingstrategy based on a particle swarm algorithm for inverse scattering problems," IEEETrans. Geosci. Remote Sens., vol. 44, pp. 298-312, 2006. [55] M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, "A multi-resolution tech-nique based on shape optimization for the reconstruction of homogeneous dielectricobjects," Inverse Problems, vol. 25, pp. 1-26, 2009. [56] M. Donelli, D. Franceschini, G. Franceschini, and A. Massa, "Effective exploitationof multi-view data through the iterative multi-scaling method - An experimentalassessment," Progress in Electromagnetics Research, PIER 54, pp. 137-154, 2005. [57] G. Franceschini, M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multi-scaling approach,"IEEE Trans. Geosci. Remote Sens., vol. 44, pp. 3527-3539, 2006. [58] M. Benedetti, A. Casagranda, M. Donelli, and A. Massa, "An adaptive multi- scalingimaging technique based on a fuzzy-logic strategy for dealing with the uncertaintyof noisy scattering data," IEEE Trans. Antennas Propagat., vol. 55, pp. 3265-3278,2007. [59] C. A. Balanis. Antenna Theory: Analysis and Design. New York: Wiley, 1997. [60] P. Lobel, Ch. Pichot, L. Blanc-Feraud, and M. Barlaud, "Conjugate-gradient algo-rithm with edge-preserving regularization for image reconstruction from Ipswich datafor mystery objects," IEEE Antennas Propag. Mag., vol. 39, pp. 12-14, 1997. [61] B. Duchéne, D. Lesselier, and R. E. Kleinman, "Inversion of the 1996 Ipswich datausing binary specialization of modified gradient methods," IEEE Antennas Propag.Mag., vol. 39, pp. 9-12, 1997. [62] A. Massa, D. Franceschini, G. Franceschini, M. Raffetto, M. Pastorino, and M.Donelli, "Parallel GA-based approach for microwave imaging applications," IEEETrans. Antennas Propagat., vol. 53, pp. 3118-3127, 2005. citation: Caramanica, Federico and Oliveri, Giacomo (2011) An innovative multi-source strategy for enhancing the reconstruction capabilities of inverse scattering techniques. [Technical Report] document_url: http://www.eledia.org/students-reports/354/1/DISI-11-034-OR11.pdf