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1 Introduction

The following report is aimed at assessing how the Quantum Fourier Transform (QFFT) algorithm can be exploited for

the analysis of Phased Arrays. The assessment will be carried out in three main phases:

1. Validation of the method: prove that if a qubit register is initialized with a set of excitations, by applying the QFFT

operation, it is possible to retrieve the Power Pattern generated by a Phased Array fed with the same excitations.

2. Assessment of the framework: analyze the effect of the variation of number of shots (7") used for the computation

of the QFFT, also in relation to different excitations scenarios.
3. Real Quantum Computer Assessment: test the procedure on real quantum computers with dedicated test cases.

4. Computational cost analysis: analyze the conditions under which calculating the Power Pattern of an array using

the QFFT is more convenient than using classical procedures and algorithms in terms of computational complexity.
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2 Mathematical Formulation

2.1 QFFT Generated Power Pattern
Classic Power Pattern

Let us consider a linear Phased Array composed of N equispaced elements along the z axis, and having complex exci-
tations w = {w, : n = 0,..., N — 1}. In order to properly initialize the excitations vector, it is necessary to take into
account the fact that the input of the QFFT must have the same length of the output, as the number of qubits involved
is fixed during the transformation the process. It is therefore mandatory to zero pad the excitations vector with M — N

values, leaving the final length of w to M. The radiation pattern generated by the array is given by the array factor A:
M-1
A(u) = Z wy, el (1)
n=0

where u = cos(#) is the cosine angular direction, & = 27/ is the wave number given the wavelength A and d is the
inter-element spacing. The expression of A can be written as function of a set of M discrete angular samples A(u,,), so

that the relationship between the set of excitations w and A(u,y, ) is a Discrete Fourier Transform (DFT). More specifically:

M-1
Alum) = Ay = D wne > @)
n=0
foreachm = 1,..., M. The function A(u) can be recovered from the A, samples by means of a weighted summation
of sinc functions, S(x) = sin(Nx)/Nsin(x) as:
N-1 o
Au) = ApS(md — 3
(u) mz::() (mdu + N ) (3)
Given the array factor A, the corresponding power pattern generated by the array is
P(u) = |A(u)[? )

The same relationship holds true for the discretized version, and considering P,, = P(u;,) to be the m—th angular
sample it can be stated that:

P = |Ap|? )

Quantum Power Pattern

To generate a phased array power patter to quantum computing the process only consists in applying the Quantum Fourier

Transform (QFFT) to the set of excitations; the procedure is described in the following.

The first step is to initialize a qubit vector |w) to define the input state vector of L = [loga(M)] qubits such that:

M-1

wn) = > iy [bn) (6)

n=0
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where W, = wy/ ||w||,n = 1,..., N, being ||-|| the norm operator and |b,,) = |q(L"), ce q%n)> the multi-qubit state

originated by the concatenation of the L qubits. Similarly to the classical version, when the QFFT algorithm is applied
to the |w) vector, the result will be a set of M complex values associated to the output state vector related to the m-th

angular samples of the array factor, namely

M-1 M-1
> tinlb) = > Albm) (7)
n=0 m=0

However, the outputs observable from the QFFT will be the probability p,,, m = 1, ..., M of measuring each state |b,, ).

Indeed the following relationship holds:

P = |Ap? ®)
where Dy, = Pim/Pmazs DEINE Praz = maz{pm}, m = 1,..., M the maximum probability among the output state

vector. Given the normalized probability, applying a circular shift th the indexes of M /2 positions and inverting their
order, the power pattern is obtained as:
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2.2 Power Pattern Mismatch Metric Definition

To quantify the precision of the QFFT, using a number of shots 7', in replicating a power pattern P, s (u) derived from a
set of excitations w = {w,,n = 1,..., N} with w,, = ay,edPr the following metric is adopted
T
Szl | [Erer @I = PGP (u)

@ = )
St | Brep ()

Region Dependent Error Metric

Since the largest part of the error seems due to errors in the side lobes (SL) region, error is computed with a region
dependent approach, dividing in SL and main lobe (ML) regions.

T)

Error in the ML region FSM is defined as:

u= T
S Breg () = PSR p(u)
Zu_fl |E7ef( |2

r(h = (10)

where Y is the u coordinate of the first null to the right of the main lobe and v is the first null to the left of the main lobe.

(T)

Error in the SL region I'y ’ is defined as:

S 1Bres P = PSR ()] + U2 |1 Brer (o) = PSR (w)

i = P (11)
Zu——l |E"'€f( |
The constraint on both errors is that:
™ 4+ =™ (12)

Statistical Measurements on Errors

Since each pattern generated by the QFFT is only a realization of a random process, the same error is calculated over
R repetitions, in order to obtain statistical measurements, in particular the average error, I'y,4 and the variance Iy,

computed as:

R
OIS Sty a3)
7'—1
R
A DY (r 1) (14)
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2.3 QFFT Resolution Limits

The output of the Qiskit software computing the QFFT operation can be seen as a vector, whose indexes are the number
of a state 1, to which is associated a value fi,,, representing the number of times the m?" state has been measured at the

measurement gate. The probability of each state is therefore computed as p,,, = pm /7T .

To represent the Power Pattern related to a set of excitations, to the m‘" angular sample w.,, is associated a value P(u,,),

which is calculated starting from g, as:

m m T m
Plug) = Pm P /T n (15)
Pmax ,umax/T Mmazx

Besides the case in which a state m is not measured, (and therefore i, = 0 and p,, = 0), the minimum representable

power value is 6 = 1/, Which can be represented as

§ = —10log10ftmaz[dB] (16)

From the previous observation it is clear that if fi,,,4,1s derived from a larger value of T, it will be able to represent even

lower probability states.

It must be noticed that the minimum representable value § can be computed only after

the measurement procedure has ended.

This is due to the fact that each new measurement of the output state could lead to a new sample in the maximum number

of counts per state.
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3 Validation

The goal of this section is to prove the theoretical assumption that applying the QFFT algorithm to a qubit vector initialized
with excitations, the output is a statevector which coefficients follow the power pattern of an equivalent array. In the
following, a comparison of the power pattern obtained via classical computing method (squaring the module of DFT
otput) is compared with the bare QFFT algorithm application to the excitations qubit vector. Since this test is done to
prove the validity of the method an arbitrary high value of T, (T > M) has been chosen, so to reduce the statistical

variance in the QFFT output.
Parameters:
Array Parameters:
e Number of elements (/NV): 16
e Elements spacing (d): A/2

e Excitation Distribution: Dolph-Chebychev (Real Excitations)

e SLL: —15[dB]

DFT/QFFT Parameters:
e Number of DFT/QFFT points (M): 1024

e Number of QFFT shots (T): 10°

Numerical Results:

0
_ DFT ——
g QFFT
= 1)
= dB
o
S -15 b
i)
IS
o
o)
=
g
5 -30
(O]
N
©
£
g -41.6 [dB]

-45 - - -
-1 -0.5 0 0.5 1

Angular Sample, u,

Figure 1: Validation (N = 16, M = 1024, T = 1.024 x 108, SLL = —15 [dB]) - Comparison between Power Pattern
Generated by DFT and QFFT algorithms, and QFFT resolution limit § according to Eq.16 (dashed line)

page 8/32



Observations

For the plot of Fig. 1 the number of shots jt,qqs, related to the maximum probability state, is 1.4518 x 10%, therefore,
following Eq. 16, the resolution in decibel is —41.619 [dB], in correspondence with the set of minimum probability points

within the plot.
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4 Assessment

In this section, the validity of the method is assessed in relation to different power patterns, as the method should be able
to replicate the pattern generated by any set of excitations. Since the main challenge for the QFFT based approach is
reaching a good resolution, this section has the goal of showing the dependency between the number of shots used in the
probability estimation and the SLL of the target power pattern. A Dolph-Chebychev distribution is selected for all the

tests in order to better relate the resolution of the QFFT to the minimum representable power level.

4.1 Single SLL analysis

Parameters

Array Parameters:

Number of elements (/V): 16

Elements spacing (d): \/2

Excitation Distribution: Dolph-Chebychev (Real Excitations)

e SLL cases: —15, —20, —25 [dB]

DFT/QFFT Parameters:

e Number of DFT points (1):1024

o Shots interval [Tyin : Tatep : Trmazl: Tonin = 2.048 x 103(M x 2), Tyaz = 1.024 x 105(M x 100), Tstep =
1.024 x 103 (M)

e QFFT repetitions (R): 20

To assess how the QFFT output approximates the classical power pattern, a single realization of the QFFT output is

reported for each SLL value.
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4.1.1 SLL=-15[dB]
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Figure 2: Assessment - SLL variation analysis (N = 16, M = 1024, T € Tw.gm x 103 : 8.192 x Hoﬁw SLL = —15
[dB]) - Example of QFFT Power Patterns compared with FFT generated Reference Patterns when (b)(f) T’ = 8.192 x 103,
(©)(g) T = 2.048 x 10%, (d)(h) T = 4.096 x 10%, (e)(i)) T = 8.192 x 10*
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4.1.2 SLL=-20[dB]
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Figure 3: Assessment - SLL variation analysis (N = 16, M = 1024, T ¢ Twp@m x 103 : 8.192 x Hoﬁw SLL = —20
[dB]) - Example of QFFT Power Patterns compared with FFT generated Reference Patterns when (b)(f) T = 8.192 x 103,
(©)(g) T = 2.048 x 10%, (d)(h) T = 4.096 x 10%, (e)(i)) T = 8.192 x 10*
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4.2 Average Power Pattern Matching per Number of Shots (SLL Variation Analysis)

To evaluate the QFFT precision in recreating power patterns, the pattern matching metric I'y,,4 of Eq. 13 (and derived

from the metric in Eq.9) is compared at parity of number of shots T for the three different S L L for the Dolph-Chebychev

distribution.

QFFT vs FFT Power Pattern Mismatch

-15 [dB] ——
35 | -20 [dB]
-25 [dB] ——

Average Power Pattern Matching, I"5,4 X10

0 1 1 1 1
0 20 40 60 80 100

Number of Shots, T x1073

Figure 5: Assessment - Shots variation analysis (N = 16, M = 1024, Dolph-Chebychev pattern) - Average Power Pattern
Mismatch I, ,comparison between patterns with SLL = {—15,—20, —25} [dB] (solid line) +Variance (Tyar)x 102
(shaded region)

Observations

From a theoretical point of view, the patterns with higher SLL should yield lower matching error, since (on the QFFT
side) the resolution needed to represent higher probabilities is lower. In the analysis however, the opposite result is shown.
The possible cause lays in the fact that the major contribution in the error is intrinsically given by the samples on the main
lobe of the power patterns; however even at low values of 7', the main lobe is fairly well approximated for all patterns, as
the related QFFT samples have higher probability of being measures. This also implies that most of the Side Lobes region
of the pattern is left entirely uncovered by the QFFT samples, meaning that the error (in the Side Lobes region of the
pattern) could be approximated as the integral of the power over the Side Lobes. Finally, being the power over the Side
Lobes lower for patterns lower S LL, the error will be smaller because the power over said regions is effectively lower

rather than because it is better recreated by the QFFT.
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4.2.1 Complexive Power Pattern Matching Metric Evaluation - Non Normalized Metric

In order to put in evidence the behaviour of the Power Pattern Matching metric, the a non normalized version of I, I has

been used:

The result for the computation

u=1
/ 2 T
U= 3 |1Bres @) = PSP (w)

u=—1

of I, 18 reprted in the following figure:

QFFT vs FFT Power Pattern Mismatch

30 T T T T
o -15 [dB] ——
) -20 [dB]
2 B -25 [dB] ——
<
S
© L
g 20
=
8
£ 15
o
o}
= 10+
o
o
Q
g 5¢
o
<
o 1 1 1 1
0 20 40 60 80

Number of Shots, T x1073

100

a7)

Figure 6: Assessment - Shots variation analysis (N = 16, M = 1024, T € [2.048 x 103 : 1.024 x 106}) - Average

Power Pattern Mismatch I,/

comparison between patterns with SLL = {—15, —20, —25} [dB]

The displacement of the curves, however is the same as the ones computed using I'.
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4.2.2 Partial Power Pattern Matching Metric Evaluation

Using the formulas of equations 10, 11 and 12, error is split into ML, and SL region and their sum, namely the total error.

Array Parameters:

e Number of elements (/NV): 16

e Elements spacing (d): A/2

e Excitation Distribution: Dolph-Chebychev (Real Excitations)

e SLL cases: —15, —20, —25 [dB]

DFT/QFFT Parameters:

e Number of DFT points (1/):1024

o Shots interval [Thnin : Timaz]: Tonin = 2.048 x 103(M % 2), Trner = 1.024 x 105(M x 1000)

e QFFT repetitions (R): 20

iy

Average Power Pattern Matching, I";,4 X10

10

TOT ——

-15 [dB] ——

100

-20 [dB]

-25 [dB] ——

Figure 7: Assessment - Shots variation analysis (N = 16, M = 1024, T € [2.048 x 103 : 1.024 x 106}) - Average
Power Pattern Mismatch I'y,,, comparison between patterns with SLL = {—15, —20, —25} [dB], divided into I'ror,
T'sr and I'psp,

T = 2.048 x 103, (M x 2) T =8.192 x 10%, (M x 80) T =1204x%
SLL Ist | |pYS) | Tror st | |§YS) | Tror st | I
—15 || 2.228 x 107! | 1.698 x 10~ | 3.926 x 107! || 6.697 x 1072 | 4.052 x 1072 | 1.075 x 10~* || 5.769 x 10~2 | 2.682
—20 || 2530 x 1071 [ 8942 x 1071 [ 3.424 x 1071 || 7.107 x 1072 | 2.029 x 1072 | 9.136 x 10~2 || 6.054 x 102 | 9.76F
—25 || 2.831 x 107! | 3.186 x 1072 | 3.150 x 10~ ! || 7.078 x 10=2 | 1.016 x 1072 | 8.094 x 10~2 || 5.800 x 10~2 | 3.746

Table I: Assessment - (N = 16, M = 1024, T € [2.048 x 10? : 1.024 x 105]) - Average Power Pattern Mismatch I'q.
comparison between patterns with SLL = {15, —20, —25} [dB], divided into I'ror, I'sr, and T'ar1, at Thnin, Tinae and

T
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Observations

From the simulations of the figure few observations can be made:

1. T'sy is on average higher for lower SLL, proving the concept that higher 7" is required in order to obtain better

representation of lower probability states.

2. I'prr, is on average lower for lower SLL: this is due to the fact that in lower SLL patterns the size of the ML is
greater with respect to higher ones. This observation can be formalized by stating that lowe SLL implies larger
Half Power Beamwidth (H PBW), therefore implying that a greater number of high probability states is present in
the main lobe of a low SLL pattern. From this last point, it is clear that to represent the ML of patterns with larger

HPBW fewer shots are necessary.

3. T'ror is still greater for lower S LL, contrarily to what is expected, but this is justified as it is the sum of I'gz, and

INVIR
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4.3 Error Analysis for Pattern Representation Reliability

In order to show correlation between matching error and power patterns afforded by the QFFT, a pattern is taken as

reference to define what a satisfactory representation looks like, toghether with Iy, 4

4.3.1 Total Error I'ror

(T)

at the 7" used to compute it.

The reference pattern is the Dolph-Chebychev with SLL = —15 [dB] computed with T;..; = 1.024 x 106 shots; the

average error at T}y, namely I, r is 8.451 x 10—2

QFFT vs FFT Power Pattern Mismatch

-15[dB] ——
-20 [dB]
-25 [dB] ——
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Figure 8: Assessment - Shots variation analysis (N = 16, M = 1024, T € [2.048 x 103 : 1.024 x 106}) - Average

Power Pattern Mismatch I',, scomparison between patterns with SLL = {—15,

error I';.c

e The value of ', is first reached by the SLL = —20[dB] pattern

(Cavg = 8.131 x 1072)

e The value of I,y is first reached by the SLL = —25[dB] pattern at T

8.425 x 10~2)

—20, —25} [dB], compared to reference

at T = 1.4336 x 10° (M x 140) shots,

6.9632 x 10* (M x 68) shots, (I'qyy =

°

'm) [dB]

Normalized Power Pattern, P(u,

DFT ——
QFFT -

Normalized Power Pattern, P(u,

im) [9B]

°

Angular Sample Index, m

DFT ——  QFFT 1.4336x10° Shots

im) [9B]

Normalized Power Pattern, P(u,

i

Angular Sample Index, m

piiiiji M

DFT ——  QFFT 6.9632x10° Shots

1

(b)

(©)

Figure 9: Assessment - Shots variation analysis (N = 16, M = 1024, T € [2.048 x 103 : 1.024 x 106]) - QFFT
computed power pattern at T shots when first reaching I',.. ¢ for SLL = {—15 (a), —20 (b), —25 (¢)} [dB]
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As can be noticed from the curves, lower SLL reach the target I',..y before the reference, however, pattern representation

is not as precise as with SLL = —15 [dB]. In the following figures sample patterns at 7' = 1.024 x 10° shots are reported:

°
°

DFT ——
QFFT -

Normalized Power Pattern, P(u,,) [dB]
3

Normalized Power Pattern, P(u,) [dB]
3

Normalized Power Pattern, P(u,,) [dB]
3

1 05 o 05 1
Angular Sample, U,

Angular Sample Index, m
DFT ——  QFFT 1.024x10° Shots.

i:ﬂmﬂ[\f\“mf\/\ﬂ(\ﬂ

Angular Sample Index, m

DFT ——  QFFT 1.024x10° Shots ~ *

1

(a)

(b)

()

Figure 10: Assessment - Shots variation analysis (N = 16, M = 1024, T € [2.048 x 10% : 1.024 x 106]) - QFFT
computed power pattern with 7' = 1.024 x 10° shots for SLL = {=15 (@), —20 (b), —25 (¢)} [dB]

4.3.2 Side Lobes Error I's,

The reference pattern is the Dolph-Chebychev with SLL

average error at 7).y, namely I‘geLf is 5.769 x 102

3
2 . -15 [dB] ==---
g R 20 [dB]
& 25} Y
= . -25[dB] ===--
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(5}
>
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Number of Shots, T x1073

—15 [dB] computed with T;..; = 1.024 x 10° shots; the

Figure 11: Assessment - Shots variation analysis (N = 16, M = 1024, T € [2.048 x 10% : 1.024 x 10°]) - Average
Power Pattern Mismatch I'¢}? comparison between patterns with SLL = {—15, —20, —25} [dB], compared to reference

ref
error I'g;

e The value of I',.c¢ is not reached by the SLL = —20 [dB] pattern, however, at T = 1.024 x 104 (M x 10000)

shots, average SL error is I'g}? = 5.991 x 1072

e The value of I',.y is first reached by the SLL = —25 [dB] pattern at T = 2.4576 x 10° (M x 2400) shots,

(D229 = 5.769 x 1072)
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Figure 12: Assessment - Shots variation analysis (N = 16, M = 1024, T € [2.048 x 10® : 1.024 x 10°]) - QFFT
computed power pattern at T shots when first reaching I';.. ¢ for SLL = {—15 (a), —20 (b), —25 (¢)} [dB]

4.3.3 Main Lobe Error I',,;,

The reference pattern is the Dolph-Chebychev with SLL = —15 [dB] computed with T;.c; = 1.024 x 106 shots; the

average error at T).. 5, namely F?\j’; is 2.682 x 1072

QFFT vs FFT Power Pattern Mismatch
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Figure 13: Assessment - Shots variation analysis (N = 16, M = 1024, T € [2.048 x 103 : 1.024 x 106}) - Average
Power Pattern Mismatch I'}; comparison between patterns with SLL = {—15, —20, —25} [dB], compared to reference

ref
error I') /7

avg

The value of I';..¢ is first reached by the SLL = —20 [dB] pattern at T = 4.3008 x 10* (M x 42) shots, (I'y,;7 =

2.635 x 1072)

e The value of I, is first reached by the SLL = —25 [dB] pattern at T = 1.024 x 10* (M x 10) shots, 97 =

2.518 x 1072)
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Figure 14: Assessment - Shots variation analysis (N = 16, M = 1024, T € [2.048 x 10® : 1.024 x 10°]) - QFFT
computed power pattern at T shots when first reaching ng’; for SLL = {—15 (a), —20 (b), —25 (¢)} [dB]
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4.4 Shaped Beams Assessment

QFFT based power pattern representation is carried out for shaped beams with both real and complex excitations. Valida-
tion is carried out also considering the impact of 7" on representation fidelity, by means of the partial error metric.

4.4.1 Taylor Pattern

Array Parameters:

e Number of elements (/V): 16

Elements spacing (d): \/2

e Excitation Distribution: Taylor
e SLL —15[dB],

e Controlled Lobes=4

DFT/QFFT Parameters:

e Number of DFT points (M ):1024
o Shots interval [Thnin : Timazl: Tomin = 2.048 X 103(M X 2), Trner = 1.024 x 106(M x 10%)

e QFFT repetitions (R): 20

Shots Sensitivity Analysis
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Figure 15: Assessment (N = 16, M = 1024, Taylor pattern) - Average Power Pattern Mismatch I'y,,4 divided into I'ror,
T'sr and I'prp,
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Table II: Assessment (N = 16, M = 1024, Taylor pattern) - Relation between partial I',,,; and T'

T st |Y95 I'ror
1.024 x 10*(M x 10) | 1.21 x 107! | 6.409 x 10=2 | 1.855 x 10!
1.024 x 10°(M x 10%) | 6.933 x 1072 | 2.602 x 1072 | 9.534 x 1072
1.024 x 10*(M x 10%) | 6.231 x 102 | 1.609 x 102 | 7.840 x 102

Sample Power Patterns

Normalized Power Pattern, P(u,) [dB]

°

05 1
Angular Sample Index, m
DFT ——  QFFT 1.024x10" Shots ——

Normalized Power Pattern, P(u,) [dB]

Normalized Power Pattern, P(u,) [dB]

Angular Sample Index, m

DFT ——  QFFT 1.024x10° Shots ——

05 1

1 05
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05

1

(b)

(©)

'm) [dB]

Normalized Power Patier, P(u,

im) [AB]

Normalized Power Pattern, P(u,

im) [AB]

Normalized Power Pattern, P(u,

Figure 16: Assessment - Pattern shape variation analysis (N = 16, M = 1024, Taylor pattern) - Sample Power Pattern
Representations at 7' = 1.024 x 104(M x 10) (a)(d), T = 1.024 x 105(M x 102) (b)(e), T = 1.024 x 105(M x 103)

)
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4.4.2 Cosecant Squared Pattern
Array Parameters:
e Number of elements (/NV): 16
e Elements spacing (d): A/2
e Excitation Distribution: Cosecant Squared

e SLL —20[dB],

DFT/QFFT Parameters:

e Number of DFT points (1/):1024
o Shots interval [Thnin : Timazl: Tonin = 2.048 x 103(M X 2), Trnez = 1.024 x 106(M x 10%)

e QFFT repetitions (R): 20

Shots Sensitivity Analysis
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Figure 17: Assessment - Pattern shape variation analysis (N = 16, M = 1024, cosecant squared pattern) - Average
Power Pattern Mismatch I' .4 divided into I'ror, I's, and ',

T st I'ver I'ror
1.024 x 10*(M x 10) | 1.649 x 10~! | 3.571 x 10=2 | 2.006 x 10!
1.024 x 10°(M x 10%) | 6.511 x 1072 | 1.342 x 102 | 7.854 x 102
1.024 x 10%(M x 10%) | 4.926 x 102 | 6.763 x 102 | 5.603 x 102

Table III: Assessment (N = 16, M = 1024, cosecant squared pattern) - Relation between partial I, and T’
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Sample Power Patterns
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Figure 18: Assessment - Pattern shape variation analysis (N = 16, M = 1024, cosecant squared pattern) - Sample Power
Pattern Representations at 7 = 1.024 x 104(M x 10) (a)(d), T = 1.024 x 10°(M x 10?) (b)(e), T = 1.024 x 106(M x 103)
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4.4.3 Flat Top Beam Pattern
Array Parameters:
e Number of elements (/NV): 16
e Elements spacing (d): A/2
e Excitation Distribution: Flat Top Main Beam

e SLL —20[dB],

DFT/QFFT Parameters:

e Number of DFT points (1/):1024

o Shots interval [Thnin : Timazl: Tonin = 2.048 x 103(M X 2), Trnez = 1.024 x 106(M x 10%)

e QFFT repetitions (R): 20

Shots Sensitivity Analysis

QFFT vs FFT Power Pattern Mismatch

1 10 100 1000

Average Power Pattern Matching, I";,4 X10

Figure 19: Assessment (N = 16, M = 1024, flat top beam pattern) - Average Power Pattern Mismatch I';,4 divided into
Fror, sy and I'yyp,

T st |Y95 I'ror
1.024 x 10*(M x 10) | 3.491 x 10~ [ 9.218 x 103 | 3.583 x 10!
1.024 x 10°(M x 10%) | 1.225 x 10~ | 4.016 x 1072 | 1.265 x 107!
1.024 x 10*(M x 103) | 3.656 x 1072 | 1.629 x 1073 | 3.818 x 102

Table IV: Assessment (N = 16, M = 1024, flat top beam pattern) - Relation between partial I,y and T’
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Figure 20: Assessment - Pattern shape variation analysis (N = 16, M = 1024, flat top beam pattern) - Sample Power
Pattern Representations at T = 1.024 x 104(M x 10) (a)(d), T = 1.024 x 10°(M x 10?) (b)(e), T = 1.024 x 106(M x 103)
)
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5 Real Quantum Computer Assessment

In this section the previously simulated derivation of the Power Pattern by means of the QFFT is tested on real quantum

computers provided by IBM.

Each quantum computer is characterized by its number of qubits, and useful informations provided by IBM are its average

error on CNOT ports (CE) together with the time elapsed from the last recalibration (TER).

As in real quantum computers noise has a strong influence, ad hoc test cases are designed in order to show the actual

correlation between inputs and outputs of the QC programs.

M=32, N=4, Uniform Excitations

One of the sets of QC available at IBM have L. = 5 qubits, therefore a first test is carried out on small scale arrays with

few DFT points.

In the following figure are reported the visual representations of the results, with the specification of the QC used with

its approximate recalibration time when the program has been executed and the average error probability on the single

CNOT gate'V:
_ 0 _ 0 ,\\ _ 0
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(e) o)

Figure 21: Real QC Assessment (N = 4, M = 32, uniform excitations) - Real QC results

(Note: The error is provided for a single gate, while in transpiled circuits many gates are put in cascade, making the error probability grow very
quickly.
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6 Complexity Evaluation

Let us consider the classical procedure for the computation of the P A power pattern, consisting in applying the DFT on
a set of M values and consequently the modulus squared. The complexity can thereby be analyzed as the sum of the

complexity of the DFT, the modulus and the power 2 elevation, with complexities:

e DFT (FFT implementation): O(Mlog(M))

e Modulus (supposing fixed time execution, i.e, application of the operation takes the same time for each instance):

O(M)
e Power 2 elevation (supposing fixed time execution): O(M)
The total complexity becomes Cejgssicar = O(Mlog(M)) + O(M) + O(M) = O(Mlog(M)) + O(2M) which, up to

constant factors, becomes:

Cclassical = O(M(lOg(M) + 1)) (18)

In the QFFT case the operation only consists in applying the QFFT, therefore, the total complexity is the one of the QFFT
algoritm, namely:

Cquantum = C‘QFFT — O(ZOQ(M)Q) (19)
The complexity ratio can therefore be computed as:

C(’ assica, M(l M 1
1 L (log(M) +1) 20)
Cquantum lOg(M)2
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7 Conclusions

In order to be able to correctly assess the precision of the QFFT algorithm in replicating the DFT results a new power

pattern matching metric should be implemented, in order to:

1. Take appropriately into account the regions in which no QFFT sample is present (i.e. states for which ., = p,,, =

0) for the computation of the metric

2. Give appropriate weight to error due to samples in the side lobe regions

A method to define the sufficient precision of the QFFT power pattern computation should be devised, since simple the

I'4vg based threshold is not representative of the actual computation fidelity.
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More information on the topics of this document can be found in the following list of references.
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