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1 Introduction

The following report is aimed at assessing how the Quantum Fourier Transform (QFFT) algorithm can be exploited for

the analysis of Phased Arrays. The assessment will be carried out in three main phases:

1. Validation of the method: prove that if a qubit register is initialized with a set of excitations, by applying the QFFT

operation, it is possible to retrieve the Power Pattern generated by a Phased Array fed with the same excitations.

2. Assessment of the framework: analyze the effect of the variation of number of shots (T ) used for the computation

of the QFFT, also in relation to different excitations scenarios.

3. Real Quantum Computer Assessment: test the procedure on real quantum computers with dedicated test cases.

4. Computational cost analysis: analyze the conditions under which calculating the Power Pattern of an array using

the QFFT is more convenient than using classical procedures and algorithms in terms of computational complexity.
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2 Mathematical Formulation

2.1 QFFT Generated Power Pattern

Classic Power Pattern

Let us consider a linear Phased Array composed of N equispaced elements along the z axis, and having complex exci-

tations w = {wn : n = 0, . . . , N − 1}. In order to properly initialize the excitations vector, it is necessary to take into

account the fact that the input of the QFFT must have the same length of the output, as the number of qubits involved

is fixed during the transformation the process. It is therefore mandatory to zero pad the excitations vector with M − N

values, leaving the final length of w to M . The radiation pattern generated by the array is given by the array factor A:

A(u) =

M−1
∑

n=0

wne
jkndu (1)

where u = cos(θ) is the cosine angular direction, k = 2π/λ is the wave number given the wavelength λ and d is the

inter-element spacing. The expression of A can be written as function of a set of M discrete angular samples A(um), so

that the relationship between the set of excitations w and A(um) is a Discrete Fourier Transform (DFT). More specifically:

A(um) = Am =

M−1
∑

n=0

wne
−2πj nm

N (2)

for each m = 1, . . . ,M . The function A(u) can be recovered from the Am samples by means of a weighted summation

of sinc functions, S(x) = sin(Nx)/Nsin(x) as:

A(u) =

N−1
∑

m=0

AmS(πdu +
mπ

N
) (3)

Given the array factor A, the corresponding power pattern generated by the array is

P (u) = |A(u)|
2

(4)

The same relationship holds true for the discretized version, and considering Pm = P (um) to be the m−th angular

sample it can be stated that:

Pm = |Am|
2

(5)

Quantum Power Pattern

To generate a phased array power patter to quantum computing the process only consists in applying the Quantum Fourier

Transform (QFFT) to the set of excitations; the procedure is described in the following.

The first step is to initialize a qubit vector |w〉 to define the input state vector of L = ⌈log2(M)⌉ qubits such that:

|wn〉 =

M−1
∑

n=0

ŵn |bn〉 (6)
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where ŵn = wn/ ‖w‖ , n = 1, . . . , N , being ‖·‖ the norm operator and |bn〉 = |q
(n)
L , . . . , q

(n)
1 〉 the multi-qubit state

originated by the concatenation of the L qubits. Similarly to the classical version, when the QFFT algorithm is applied

to the |w〉 vector, the result will be a set of M complex values associated to the output state vector related to the m-th

angular samples of the array factor, namely

M−1
∑

n=0

ŵn|bn〉 →

M−1
∑

m=0

Am|bm〉 (7)

However, the outputs observable from the QFFT will be the probability pm, m = 1, . . . ,M of measuring each state |bm〉.

Indeed the following relationship holds:

p̂m = |Am|
2

(8)

where p̂m = pm/pmax, being pmax = max{pm}, m = 1, . . . ,M the maximum probability among the output state

vector. Given the normalized probability, applying a circular shift th the indexes of M/2 positions and inverting their

order, the power pattern is obtained as:

Pm = p̂m
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2.2 Power Pattern Mismatch Metric Definition

To quantify the precision of the QFFT, using a number of shots T , in replicating a power pattern Pref (u) derived from a

set of excitations w = {wn, n = 1, ..., N} with wn = αne
jβn the following metric is adopted

Γ(T ) =

∑u=1
u=−1

∣

∣

∣
|Eref (u)|

2 − P
(T )
QFFT (u)

∣

∣

∣

∑u=1
u=−1 |Eref (u)|

2 (9)

Region Dependent Error Metric

Since the largest part of the error seems due to errors in the side lobes (SL) region, error is computed with a region

dependent approach, dividing in SL and main lobe (ML) regions.

Error in the ML region Γ
(T )
M is defined as:

Γ
(T )
M =

∑u=χ

u=ν

∣

∣

∣
|Eref (u)|

2
− P

(T )
QFFT (u)

∣

∣

∣

∑u=1
u=−1 |Eref (u)|

2 (10)

where χ is the u coordinate of the first null to the right of the main lobe and ν is the first null to the left of the main lobe.

Error in the SL region Γ
(T )
S is defined as:

Γ
(T )
S =

∑u=1
u=χ

∣

∣

∣
|Eref (u)|

2
− P

(T )
QFFT (u)

∣

∣

∣
+
∑u=ν

u=−1

∣

∣

∣
|Eref (u)|

2
− P

(T )
QFFT (u)

∣

∣

∣

∑u=1
u=−1 |Eref (u)|

2 (11)

The constraint on both errors is that:

Γ(T )
s + Γ

(T )
M = Γ(T ) (12)

Statistical Measurements on Errors

Since each pattern generated by the QFFT is only a realization of a random process, the same error is calculated over

R repetitions, in order to obtain statistical measurements, in particular the average error, Γavg and the variance Γvar,

computed as:

Γ(T )
avg =

1

R

R
∑

r=1

Γ(T )
r (13)

Γ(T )
var =

1

N − 1

R
∑

r=1

(

Γ(T )
r − Γ(T )

avg

)2

(14)
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2.3 QFFT Resolution Limits

The output of the Qiskit software computing the QFFT operation can be seen as a vector, whose indexes are the number

of a state m, to which is associated a value µm, representing the number of times the mth state has been measured at the

measurement gate. The probability of each state is therefore computed as pm = µm/T .

To represent the Power Pattern related to a set of excitations, to the mth angular sample um is associated a value P (um),

which is calculated starting from µm as:

P (um) =
pm
pmax

=
µm/T

µmax/T
=

µm

µmax

(15)

Besides the case in which a state m is not measured, (and therefore µm = 0 and pm = 0), the minimum representable

power value is δ = 1/µmax, which can be represented as

δ = −10log10µmax[dB] (16)

From the previous observation it is clear that if µmaxis derived from a larger value of T , it will be able to represent even

lower probability states.

It must be noticed that the minimum representable value δ can be computed only after

the measurement procedure has ended.

This is due to the fact that each new measurement of the output state could lead to a new sample in the maximum number

of counts per state.
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3 Validation

The goal of this section is to prove the theoretical assumption that applying the QFFT algorithm to a qubit vector initialized

with excitations, the output is a statevector which coefficients follow the power pattern of an equivalent array. In the

following, a comparison of the power pattern obtained via classical computing method (squaring the module of DFT

otput) is compared with the bare QFFT algorithm application to the excitations qubit vector. Since this test is done to

prove the validity of the method an arbitrary high value of T , (T ≫ M) has been chosen, so to reduce the statistical

variance in the QFFT output.

Parameters:

Array Parameters:

• Number of elements (N ): 16

• Elements spacing (d): λ/2

• Excitation Distribution: Dolph-Chebychev (Real Excitations)

• SLL: −15 [dB]

DFT/QFFT Parameters:

• Number of DFT/QFFT points (M ): 1024

• Number of QFFT shots (T ): 106

Numerical Results:
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Figure 1: Validation (N = 16, M = 1024, T = 1.024× 106, SLL = −15 [dB]) - Comparison between Power Pattern

Generated by DFT and QFFT algorithms, and QFFT resolution limit δ according to Eq.16 (dashed line)
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Observations

For the plot of Fig. 1 the number of shots µmax, related to the maximum probability state, is 1.4518 × 104, therefore,

following Eq. 16, the resolution in decibel is −41.619 [dB], in correspondence with the set of minimum probability points

within the plot.
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4 Assessment

In this section, the validity of the method is assessed in relation to different power patterns, as the method should be able

to replicate the pattern generated by any set of excitations. Since the main challenge for the QFFT based approach is

reaching a good resolution, this section has the goal of showing the dependency between the number of shots used in the

probability estimation and the SLL of the target power pattern. A Dolph-Chebychev distribution is selected for all the

tests in order to better relate the resolution of the QFFT to the minimum representable power level.

4.1 Single SLL analysis

Parameters

Array Parameters:

• Number of elements (N ): 16

• Elements spacing (d): λ/2

• Excitation Distribution: Dolph-Chebychev (Real Excitations)

• SLL cases: −15, −20, −25 [dB]

DFT/QFFT Parameters:

• Number of DFT points (M ):1024

• Shots interval [Tmin : Tstep : Tmax]: Tmin = 2.048 × 103(M × 2), Tmax = 1.024 × 105(M × 100), Tstep =

1.024× 103 (M )

• QFFT repetitions (R): 20

To assess how the QFFT output approximates the classical power pattern, a single realization of the QFFT output is

reported for each SLL value.
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4.2 Average Power Pattern Matching per Number of Shots (SLL Variation Analysis)

To evaluate the QFFT precision in recreating power patterns, the pattern matching metric Γavg of Eq. 13 (and derived

from the metric in Eq.9) is compared at parity of number of shots T for the three different SLL for the Dolph-Chebychev

distribution.
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Figure 5: Assessment - Shots variation analysis (N = 16, M = 1024, Dolph-Chebychev pattern) - Average Power Pattern

Mismatch Γavgcomparison between patterns with SLL = {−15,−20,−25} [dB] (solid line) ±Variance (Γvar)×102

(shaded region)

Observations

From a theoretical point of view, the patterns with higher SLL should yield lower matching error, since (on the QFFT

side) the resolution needed to represent higher probabilities is lower. In the analysis however, the opposite result is shown.

The possible cause lays in the fact that the major contribution in the error is intrinsically given by the samples on the main

lobe of the power patterns; however even at low values of T , the main lobe is fairly well approximated for all patterns, as

the related QFFT samples have higher probability of being measures. This also implies that most of the Side Lobes region

of the pattern is left entirely uncovered by the QFFT samples, meaning that the error (in the Side Lobes region of the

pattern) could be approximated as the integral of the power over the Side Lobes. Finally, being the power over the Side

Lobes lower for patterns lower SLL, the error will be smaller because the power over said regions is effectively lower

rather than because it is better recreated by the QFFT.
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4.2.1 Complexive Power Pattern Matching Metric Evaluation - Non Normalized Metric

In order to put in evidence the behaviour of the Power Pattern Matching metric, the a non normalized version of Γ, Γ
′

has

been used:

Γ
′

=

u=1
∑

u=−1

∣

∣

∣
|Eref (u)|

2
− P

(T )
QFFT (u)

∣

∣

∣
(17)

The result for the computation of Γ′

avgis reprted in the following figure:
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Figure 6: Assessment - Shots variation analysis (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - Average

Power Pattern Mismatch Γ′

avgcomparison between patterns with SLL = {−15,−20,−25} [dB]

The displacement of the curves, however is the same as the ones computed using Γ.
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4.2.2 Partial Power Pattern Matching Metric Evaluation

Using the formulas of equations 10, 11 and 12, error is split into ML, and SL region and their sum, namely the total error.

Array Parameters:

• Number of elements (N ): 16

• Elements spacing (d): λ/2

• Excitation Distribution: Dolph-Chebychev (Real Excitations)

• SLL cases: −15, −20, −25 [dB]

DFT/QFFT Parameters:

• Number of DFT points (M ):1024

• Shots interval [Tmin : Tmax]: Tmin = 2.048× 103(M × 2), Tmax = 1.024× 106(M × 1000)

• QFFT repetitions (R): 20
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Figure 7: Assessment - Shots variation analysis (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - Average

Power Pattern Mismatch Γavg comparison between patterns with SLL = {−15,−20,−25} [dB], divided into ΓTOT ,

ΓSL and ΓML

T = 2.048× 103, (M × 2) T = 8.192× 104, (M × 80) T = 1.204× 1
SLL ΓSL ΓML ΓTOT ΓSL ΓML ΓTOT ΓSL Γ

−15 2.228× 10−1 1.698× 10−1 3.926× 10−1 6.697× 10−2 4.052× 10−2 1.075× 10−1 5.769× 10−2 2.682
−20 2.530× 10−1 8.942× 10−1 3.424× 10−1 7.107× 10−2 2.029× 10−2 9.136× 10−2 6.054× 10−2 9.765
−25 2.831× 10−1 3.186× 10−2 3.150× 10−1 7.078× 10−2 1.016× 10−2 8.094× 10−2 5.800× 10−2 3.746

Table I: Assessment - (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - Average Power Pattern Mismatch Γavg

comparison between patterns with SLL = {−15,−20,−25} [dB], divided into ΓTOT , ΓSL and ΓML at Tmin, Tmax and

T̂
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Observations

From the simulations of the figure few observations can be made:

1. ΓSL is on average higher for lower SLL, proving the concept that higher T is required in order to obtain better

representation of lower probability states.

2. ΓML is on average lower for lower SLL: this is due to the fact that in lower SLL patterns the size of the ML is

greater with respect to higher ones. This observation can be formalized by stating that lowe SLL implies larger

Half Power Beamwidth (HPBW ), therefore implying that a greater number of high probability states is present in

the main lobe of a low SLL pattern. From this last point, it is clear that to represent the ML of patterns with larger

HPBW fewer shots are necessary.

3. ΓTOT is still greater for lower SLL, contrarily to what is expected, but this is justified as it is the sum of ΓSL and

ΓML.
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4.3 Error Analysis for Pattern Representation Reliability

In order to show correlation between matching error and power patterns afforded by the QFFT, a pattern is taken as

reference to define what a satisfactory representation looks like, toghether with Γ
(T )
avg at the T used to compute it.

4.3.1 Total Error ΓTOT

The reference pattern is the Dolph-Chebychev with SLL = −15 [dB] computed with Tref = 1.024 × 106 shots; the

average error at Tref , namely Γref is 8.451× 10−2
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Figure 8: Assessment - Shots variation analysis (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - Average

Power Pattern Mismatch Γavgcomparison between patterns with SLL = {−15,−20,−25} [dB], compared to reference

error Γref

• The value of Γref is first reached by the SLL = −20[dB] pattern at T̂ = 1.4336 × 105 (M × 140) shots,

(Γavg = 8.131× 10−2)

• The value of Γref is first reached by the SLL = −25[dB] pattern at T̂ = 6.9632× 104 (M × 68) shots, (Γavg =

8.425× 10−2)
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Figure 9: Assessment - Shots variation analysis (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - QFFT

computed power pattern at T̂ shots when first reaching Γref for SLL = {−15 (a), −20 (b), −25 (c)} [dB]
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As can be noticed from the curves, lower SLL reach the target Γref before the reference, however, pattern representation

is not as precise as with SLL = −15 [dB]. In the following figures sample patterns at T = 1.024×106 shots are reported:
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Figure 10: Assessment - Shots variation analysis (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - QFFT

computed power pattern with T = 1.024× 106 shots for SLL = {−15 (a), −20 (b), −25 (c)} [dB]

4.3.2 Side Lobes Error ΓSL

The reference pattern is the Dolph-Chebychev with SLL = −15 [dB] computed with Tref = 1.024 × 106 shots; the

average error at Tref , namely Γref
SL is 5.769× 10−2
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Figure 11: Assessment - Shots variation analysis (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - Average

Power Pattern Mismatch Γavg
SL comparison between patterns with SLL = {−15,−20,−25} [dB], compared to reference

error Γref
SL

• The value of Γref is not reached by the SLL = −20 [dB] pattern, however, at T̂ = 1.024 × 104 (M × 10000)

shots, average SL error is Γavg
SL = 5.991× 10−2

• The value of Γref is first reached by the SLL = −25 [dB] pattern at T̂ = 2.4576 × 106 (M × 2400) shots,

(Γavg
SL = 5.769× 10−2)
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Figure 12: Assessment - Shots variation analysis (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - QFFT

computed power pattern at T̂ shots when first reaching Γref for SLL = {−15 (a), −20 (b), −25 (c)} [dB]

4.3.3 Main Lobe Error ΓML

The reference pattern is the Dolph-Chebychev with SLL = −15 [dB] computed with Tref = 1.024 × 106 shots; the

average error at Tref , namely Γref
ML is 2.682× 10−2

 0

 0.5

 1

 1.5

 2

 1  10  100  1000

A
ve

ra
ge

 P
ow

er
 P

at
te

rn
 M

at
ch

in
g,

 Γ
av

g 
x1

0

Number of Shots, T x10-3

QFFT vs FFT Power Pattern Mismatch

-15 [dB]

-20 [dB]

-25 [dB]

Γref
ML

Figure 13: Assessment - Shots variation analysis (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - Average

Power Pattern Mismatch Γavg
MLcomparison between patterns with SLL = {−15,−20,−25} [dB], compared to reference

error Γref
ML

The value of Γref is first reached by the SLL = −20 [dB] pattern at T̂ = 4.3008 × 104 (M × 42) shots, (Γavg
ML =

2.635× 10−2)

• The value of Γref is first reached by the SLL = −25 [dB] pattern at T̂ = 1.024× 104 (M × 10) shots, (Γavg
ML =

2.518× 10−2)
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Figure 14: Assessment - Shots variation analysis (N = 16, M = 1024, T ∈
[

2.048× 103 : 1.024× 106
]

) - QFFT

computed power pattern at T̂ shots when first reaching Γref
ML for SLL = {−15 (a), −20 (b), −25 (c)} [dB]
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4.4 Shaped Beams Assessment

QFFT based power pattern representation is carried out for shaped beams with both real and complex excitations. Valida-

tion is carried out also considering the impact of T on representation fidelity, by means of the partial error metric.

4.4.1 Taylor Pattern

Array Parameters:

• Number of elements (N ): 16

• Elements spacing (d): λ/2

• Excitation Distribution: Taylor

• SLL −15 [dB],

• Controlled Lobes=4

DFT/QFFT Parameters:

• Number of DFT points (M ):1024

• Shots interval [Tmin : Tmax]: Tmin = 2.048× 103(M × 2), Tmax = 1.024× 106(M × 103)

• QFFT repetitions (R): 20

Shots Sensitivity Analysis
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Figure 15: Assessment (N = 16, M = 1024, Taylor pattern) - Average Power Pattern Mismatch Γavg divided into ΓTOT ,

ΓSL and ΓML
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T ΓSL ΓML ΓTOT

1.024× 104(M × 10) 1.21× 10−1 6.409× 10−2 1.855× 10−1

1.024× 105(M × 102) 6.933× 10−2 2.602× 10−2 9.534× 10−2

1.024× 104(M × 103) 6.231× 10−2 1.609× 10−2 7.840× 10−2

Table II: Assessment (N = 16, M = 1024, Taylor pattern) - Relation between partial Γavg and T

Sample Power Patterns
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Figure 16: Assessment - Pattern shape variation analysis (N = 16, M = 1024, Taylor pattern) - Sample Power Pattern

Representations at T = 1.024 × 104(M × 10) (a)(d), T = 1.024 × 105(M × 102) (b)(e), T = 1.024 × 106(M × 103)

(c)(f )
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4.4.2 Cosecant Squared Pattern

Array Parameters:

• Number of elements (N ): 16

• Elements spacing (d): λ/2

• Excitation Distribution: Cosecant Squared

• SLL −20 [dB],

DFT/QFFT Parameters:

• Number of DFT points (M ):1024

• Shots interval [Tmin : Tmax]: Tmin = 2.048× 103(M × 2), Tmax = 1.024× 106(M × 103)

• QFFT repetitions (R): 20

Shots Sensitivity Analysis

*
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Figure 17: Assessment - Pattern shape variation analysis (N = 16, M = 1024, cosecant squared pattern) - Average

Power Pattern Mismatch Γavg divided into ΓTOT , ΓSL and ΓML

T ΓSL ΓML ΓTOT

1.024× 104(M × 10) 1.649× 10−1 3.571× 10−2 2.006× 10−1

1.024× 105(M × 102) 6.511× 10−2 1.342× 10−2 7.854× 10−2

1.024× 104(M × 103) 4.926× 10−2 6.763× 10−2 5.603× 10−2

Table III: Assessment (N = 16, M = 1024, cosecant squared pattern) - Relation between partial Γavg and T
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Sample Power Patterns
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Figure 18: Assessment - Pattern shape variation analysis (N = 16, M = 1024, cosecant squared pattern) - Sample Power

Pattern Representations at T = 1.024×104(M×10) (a)(d), T = 1.024×105(M×102) (b)(e), T = 1.024×106(M×103)

(c)(f )
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4.4.3 Flat Top Beam Pattern

Array Parameters:

• Number of elements (N ): 16

• Elements spacing (d): λ/2

• Excitation Distribution: Flat Top Main Beam

• SLL −20 [dB],

DFT/QFFT Parameters:

• Number of DFT points (M ):1024

• Shots interval [Tmin : Tmax]: Tmin = 2.048× 103(M × 2), Tmax = 1.024× 106(M × 103)

• QFFT repetitions (R): 20

Shots Sensitivity Analysis
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Figure 19: Assessment (N = 16, M = 1024, flat top beam pattern) - Average Power Pattern Mismatch Γavg divided into

ΓTOT , ΓSL and ΓML

T ΓSL ΓML ΓTOT

1.024× 104(M × 10) 3.491× 10−1 9.218× 10−3 3.583× 10−1

1.024× 105(M × 102) 1.225× 10−1 4.016× 10−3 1.265× 10−1

1.024× 104(M × 103) 3.656× 10−2 1.629× 10−3 3.818× 10−2

Table IV: Assessment (N = 16, M = 1024, flat top beam pattern) - Relation between partial Γavg and T
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Sample Power Patterns
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Figure 20: Assessment - Pattern shape variation analysis (N = 16, M = 1024, flat top beam pattern) - Sample Power

Pattern Representations at T = 1.024×104(M×10) (a)(d), T = 1.024×105(M×102) (b)(e), T = 1.024×106(M×103)

(c)(f )

page 27/32



5 Real Quantum Computer Assessment

In this section the previously simulated derivation of the Power Pattern by means of the QFFT is tested on real quantum

computers provided by IBM.

Each quantum computer is characterized by its number of qubits, and useful informations provided by IBM are its average

error on CNOT ports (CE) together with the time elapsed from the last recalibration (TER).

As in real quantum computers noise has a strong influence, ad hoc test cases are designed in order to show the actual

correlation between inputs and outputs of the QC programs.

M=32, N=4, Uniform Excitations

One of the sets of QC available at IBM have L = 5 qubits, therefore a first test is carried out on small scale arrays with

few DFT points.

In the following figure are reported the visual representations of the results, with the specification of the QC used with

its approximate recalibration time when the program has been executed and the average error probability on the single

CNOT gate(1):
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Figure 21: Real QC Assessment (N = 4, M = 32, uniform excitations) - Real QC results

(1)Note: The error is provided for a single gate, while in transpiled circuits many gates are put in cascade, making the error probability grow very

quickly.
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6 Complexity Evaluation

Let us consider the classical procedure for the computation of the PA power pattern, consisting in applying the DFT on

a set of M values and consequently the modulus squared. The complexity can thereby be analyzed as the sum of the

complexity of the DFT, the modulus and the power 2 elevation, with complexities:

• DFT (FFT implementation): O(Mlog(M))

• Modulus (supposing fixed time execution, i.e, application of the operation takes the same time for each instance):

O(M)

• Power 2 elevation (supposing fixed time execution): O(M)

The total complexity becomes Cclassical = O(Mlog(M)) + O(M) + O(M) = O(Mlog(M)) + O(2M) which, up to

constant factors, becomes:

Cclassical = O(M(log(M) + 1)) (18)

In the QFFT case the operation only consists in applying the QFFT, therefore, the total complexity is the one of the QFFT

algoritm, namely:

Cquantum = CQFFT = O(log(M)2) (19)

The complexity ratio can therefore be computed as:

Cclassical

Cquantum

=
M(log(M) + 1)

log(M)2
(20)
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7 Conclusions

In order to be able to correctly assess the precision of the QFFT algorithm in replicating the DFT results a new power

pattern matching metric should be implemented, in order to:

1. Take appropriately into account the regions in which no QFFT sample is present (i.e. states for which µm = pm =

0) for the computation of the metric

2. Give appropriate weight to error due to samples in the side lobe regions

A method to define the sufficient precision of the QFFT power pattern computation should be devised, since simple the

Γavg based threshold is not representative of the actual computation fidelity.
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More information on the topics of this document can be found in the following list of references.
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