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1 Mathematical Formulation

Let us consider a linear array of N elements equally-spaced by d along the x-axis to be grouped into Q (Q < N ) sub-

arrays, each containing Nq (q = 1, ..., Q) elements, so that
∑N

n=1 Nq = N . For beam-forming purposes, each q-th

(q = 1, ..., Q) sub-array is fed by TRM composed by an amplifier and a phase shifter providing a complex excitation Iq .

The array factor of the beam generated at sub-array level is:

AF (u) =

Q
∑

q=1

Iq

N
∑

n=1

δcnqe
jk(n−1)du (1)

where Iq = αqe
jϕq , being αq and ϕq the amplitude and the phase coefficients of the q-th (q = 1, ..., Q) sub-array,

respectively. Moreover, k = 2π
λ

is the wavenumber, λ the wavelength and u = sin (θ), being θ the angle measured from

broadside. δcnq is the Kronecker delta function:

δcn =











1 if cn = q

0 if cn 6= q
(2)

where c = {cn ∈ N | 1 ≤ cn ≤ Q, n = 1, ..., N} is the integer vector describing the membership of the n-th (n =

1, ..., N ) array element to the q-th cluster.

Sub-Arraying synthesis problem: given a set of complex excitations, {wn, n = 1, ..., N}, generating a reference arbitrary-

shaped pattern

AF ref (u) =

N
∑

n=1

wne
jk(n−1)du (3)

determine the optimal clustering of the array elements into Q disjoint sub-arrays, copt = {coptn , n = 1, ..., N} and the

values of the complex excitations, Iopt =
{

Ioptq , q = 1, ..., Q
}

so that the beam generated at sub-array level is close ad

much as possible to the reference one. For this reason, the synthesis problem is here reformulated as an optimization one

in which the DoFs (membership vector c, and the sub-array level beamforming excitation vector, I) are set to minimize

the following field-matching cost function:

Φ (c, I) =

∫ 1

−1

∣

∣AF ref (u)− AF (u, c, I)
∣

∣

2
du

∫ 1

−1 |AF
ref (u)|

2
du

(4)

and this is equivalent to minimize the following excitation-matching cost function:

Ψ(c, I) =
1

N

N
∑

n=1

∣

∣

∣

∣

∣

wn −

Q
∑

q=1

δcnqIq

∣

∣

∣

∣

∣

2

(5)

since the remaining terms in (4) are function of neither c nor I. The optimal values of the q-th (q = 1, ..., Q) sub-array

coefficient, Iq , for a fixed clustering configuration c that minimizes (5) is the arithmetic mean of the reference excitations
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of the elements belonging to the same q-th (q = 1, ..., Q) cluster:

Iq (c) =

∑N

n=1 δcnqwn

Nq

(6)

Thus, the synthesis can be perfomed only looking to the optimum sub-arraying configuration, copt, since the sub-array

weigths come out as a free through (6).

To evalute the pattern generated with a specific sub-arraying configuration the following another quantity called power-

pattern matching should be evaluated:

Γ (c, I) =

∫ 1

−1

∣

∣

∣

∣

∣AF ref (u)
∣

∣

2
− |AF (u, c, I)|

2
∣

∣

∣
du

∫ 1

−1 |AF
ref (u)|

2
du

(7)

For the minimization of Ψ(c) an extension of the contiguous partition method (CPM) has been adopted. It lies within

the Fisher’s grouping theory, and it requires the creation of an ordered list of values. Once the list is defined the Border

Element Method (BEM) is exploited for efficiently sampling the solution space of the possible clustering configurations

(i.e. the contiguous partition of the list of the reference excitations). To compute the ordered list different strategies can

be adopted. In this work, the objective is to find a locality-preserving mapping from the 2D complex plane into a one-

dimensional space. This techniques have been adopted in computer science for many applications (e.g., range queries,

nearest-neighbor queries, clustering and declustering) when multidimensional data is placed into one-dimensional storage

(e.g., disk). The idea behind locality-preserving mapping is to map points that are nearby in the multidimensional space

into points that are nearby in the one-dimensional space. In the following, two sorting methods will be explained and

analysed.
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1.1 Hilbert Curve Sorting + BEM

The Hilbert space-filling curve (Fig. 1) is a continuous fractal space-filling curve first described by the German mathe-

matician David Hilbert in 1891, as a variant of the space-filling Peano curves discovered by Giuseppe Peano in 1890.
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Figure 1: Hilbert Curve - order 3

Space-filling curve is a one-to-one mapping between multidimensional space into one-dimensional space. Among all the

space-filling curve, Hilbert curve preserves point neighborhoods as much as possible, hence it is widely applied in digital

image processing, such image compression, image clustering and object recognition. Hilbert curve has been here chosen

to sort the complex excitations of a linear phased array. More in details, to generate a sorted list, the Hilbert curve of order

H , where H represents the H-th approximation to the limiting curve, has been selected. The clustering procedure works

as follows:

• Step 0 - Hilbert ordered list creation: given the set ofN complex values of the reference vectorw = {wn, n = 1, ..., N},

define a list L = {ℓn, n = 1, .., N} by ordering the reference excitations according to their position with respect

to the Hilbert curve of order H . First of all, a Hilbert curve of order H has been generated to fill a square in the

complex plane having dimension s = 2 and as center the origin of the plane. Then, each complex excitation wn,

(n = 1, ..., N ) has been projected on the curve and the projected excitations have been sorted according to the curve

folding, starting from one extreme curve vertex and stopping to the opposite extreme curve vertex. Notice that, if

two excitations have the same projection on the Hilbert curve, the first one is the one with the smaller distance from

the curve.

• Step 1 - Initialization: Once L is defined, set the initial sub-array configuration c
(t), (t = 0, being t the iteration

index) by randomly selecting Q− 1 cut points among the N − 1 admissible ones.

• Step 2 - BEM application: apply iteratively the Border Element Method optimization algorithm in order to minimize

the excitation-matching cost function.
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• Step 3 - Sub-Arrayed Array design: set copt = c
(t)
opt and I

opt = I
(t)
opt.

A variant of the algorithm just described, considers the use of the Moore Curve to sort the excitations in the complex

plane. In particular, the Moore curve is a another continuous fractal space-filling curve. Precisely, it is the loop version of

the Hilbert curve, and it may be thought as the union of four copies of the Hilbert curves combined in such a way to make

the endpoints coincide (Fig. 2).
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Figure 2: Moore Curve - order 3
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1.2 Spectral LPM Sorting + BEM

Fractals divide the space into a number of fragments, visiting the fragments in a specific order. Once a fractal starts to

visit points from a certain fragment, no other fragment is visited until the current one is not completely exhausted. By

dealing with one fragment, fractals perform a local optimization based on the current fragment. Thus, fractals suffers of

the so-called boundary effect problem, where points far from the fragment borders are favored. Points that lie near the

fragment borders fare the worst, as it can be see from Fig.

3.

Figure 3: Boundary Effect: Hilbert Curve Sorting limitation.

Since points P1 and P2 lies on two different quadrants, they are mapped far away from each other. To overcome such a

drawback, the Spectral Locality-Preserving Mapping (LPM) algorithm has been proposed. Spectral LPM avoids draw-

backs of fractals, adopting a global optimization, which means that all the data points in the plane are taken into account

when performing the mapping. In general, spectral algorithms use the eigenvalues and eigenvectors of the matrix repre-

sentation of a graph. In fact, this kind of algorithms has been widely used in graph partitioning and data clustering. For

our purpose, a slightly modified version of the algorithm proposed by Mokbel in 2003 has been developed. The main

reason of such modification is linked with the type of data to sort. In its work, Mokbelis dealing with memory addresses

access (discrete values), while we are dealing with complex excitations (continuous values).
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Algorithm 1 Spectral LPM

Input: A set of N multi-dimensional points P = {pi, i = 1, ..., N}
Output: A linear order S of the set P

1. Model the set of multi-dimensional points P as a graph G (V, E) such that each point pi ∈ P is represented by a

vertex vi ∈ V , and there is an edge (vi, vj) ∈ E if and only if ‖pi − pj‖ ≤ ε, being ε a defined threshold.

2. Compute the graph Laplacian matrix, L (G) = D (G) − A (G), where D (G) is the graph diagonal matrix with

D (G)ii = δ (vi), being δ (vi) the degree of the vertex vi and A (G) is the graph adjacency matrix with A (G)ij = 1
if and only if the edge (i, j) ∈ E.

3. Compute the second smallest eigenvalue λ2 and its corresponding eigenvector X2 = [x1, x2, ..., xN ] of L (G),
known as Fiedler vector.

4. For each i = 1 → N , assign the value xi to vi and hence to pi.

5. Sort the eigenvector components in ascending order.

6. The linear order S of P is the order of the assigned values of pi’s.

In such a way it is possible to obtain an ordered list of excitations and thus to apply the Border Element Method optimiza-

tion algorithm to minimize the excitation-matching cost function (5) and to find the most suitable sub-array configuration.

In the following a deeper explanation of the algorithm application will be given and some specific graph concepts will be

defined.

Given a set of N complex excitations, wn = ℜ{wn} + ℑ{wn} , n = 1, ..., N , being ℜ{wn} and ℑ{wn} the real and

imaginary part respectively, according to the Spectral LPM algorithm (Alg. 1) an undirected, finite graph without loops

must be computed. Specifically, an undirected graph is a graph G (V, E), i.e., a set of objects, called vertices or nodes,

V , that are connected together by edges E, where all the edges are bidirectional. In contrast, a graph where the edges

point in a direction is called a directed graph. There are several ways to transform a given set of data points with pairwise

similarities or pairwise distances into a graph. In general, two types of graphs can be constructed:

• ε-neighborhood graph: all points, whose pairwise distances are smaller than a given threshold ε, are connected

• k-nearest neighbor graph: vertex vi is connected with vj if and only if vj is among the k-nearest neighbors of vi,

given a similarity measure.

For our aim, a ε-neighborhood graph has been developed and the Euclidean distance has been chosen as similarity mea-

sure, i.e. two vertices will be connected if and only if their euclidean distance is less than a defined threshold, ε. To avoid

a useless threshold calibration, an analytic formula has been developed:

ε = max {min {‖wi − wj‖}} , i, j = 1, ..., N, i 6= j (8)

Since each graph vertex vi could have many edges, to favor smaller distance connections, a weighted graph has been used,

e.g. a graph with weighted edges. For our purpose, the weights of each edge are defined in the following way:

ωij =
1

‖wi − wj‖
, i, j = 1, ..., N, i 6= j (9)
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The proposed algorithm works with a matrix representation of the graph. Therefore, let us define the following matrixes

of a graph:

• Adjacency matrix A (G): a square matrix used to represent a finite graph. The elements of the matrix indicate

whether pairs of vertices are adjacent or not in the graph, i.e. a (0. 1)-matrix with zeros on its diagonal in case of an

unweighted graph. Instead, for a weighted graph, it can be defined as a (0, ωij)-matrix. Considering an undirected

graph, the matrix is symmetric.

• Degree matrix D (G): a diagonal matrix with the degrees d1, ..., dN on the diagonal, i.e. the number of edges

attached to each vertex.

• Laplacian matrix L (G): a symmetric matrix with one row and column for each node defined by:

L (G) = A (G)−D (G) (10)

The Laplacian matrix has a fundamental role in the Spectral Graph Theory, the study of the properties of a graph in

relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrixes associated with the graph, such as

its Adjacency matrix or Laplacian matrix. More in details, the eigenvalues of the Laplacian matrix of a graph are closely

related to the connectivity property.

Definition (Connected Graph): a graph is connected if there exists a path between every pair of vertex. In other words,

from every vertex to any other vertex, there should be some path to traverse. Instead, a graph with multiple disconnected

vertices and edges is called disconnected.

Moreover, given an undirected graph and its Laplacian matrix the following proposition holds true:

Proposition: let G be an undirected graph with non-negative weights and L (G) the corresponding Laplacian matrix, then

the multiplicity k of the eigenvalue 0 of L (G) equals the number of connected components B1, ..., Bk in the graph.

As a consequence, a graph is connected if its Laplacian matrix has eigenvalue 0 with multiplicity equal to 1. Analogously,

a graph is connected if and only if, given the sorted list of eigenvalues, λ1 ≤ λ2 ≤ ... ≤ λN , the second smallest

eigenvalue, λ2 > 0. This value represents the algebraic connectivity of a graph. The related eigenvector is known as

Fiedler vector and it has been used for graph partitioning.
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More information on the topics of this document can be found in the following list of references.
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