NDT-NDE Crack Characterization Through a Learning-by-Examples Approach

M. Salucci, N. Anselmi, G. Oliveri, and A. Massa

Abstract

This document deals with the characterization of a single narrow crack in a planar conductive structure starting from eddy current testing (*ECT*) measurements. More precisely, the inversion problem at hand is formulated within the so-called learning-by-examples (*LBE*) paradigm, by considering the problem of estimating the dimensions of the defect as a regression one. Accordingly, a set of known input-output pairs is generated during an *off-line* phase and is given as input to a Support Vector Regressor (*SVR*) prediction model in order to train it on the relationship between defect and corresponding *ECT* data. Some numerical results are shown in order to verify the effectiveness, as well as the limits, of the proposed *LBE* technique when dealing with the presence of noise on testing data during the *on-line* inversion phase.

¹ Cra
k Dimensions Estimation Inside ^a Plate Stru
ture

1.1 Des
ription

Let be given an homogeneous plate of thickness T and conductivity σ affected by a narrow crack and inspected by a single coil working in absolute mode at frequency f with lift-off δ (Fig. 1). The dimensions of the crack are completely described by the vector **p** of $I = 3$ parameters

$$
\mathbf{p} = \{d_0, l_0, w_0\} \tag{1}
$$

which correspond to its depth, length and width, respectively. Moreover, we assume that the location of the crack (identified by the triplet of coordinates (x_0, y_0, z_0)) is fixed and known (Fig. 1).

Figure 1: Geometry of the problem.

A metamodel is used as forward solver to compute in a fast but accurate way the measured ECT signal associated to a particular dimension of the defect. More in details, for a given vector **p** of crack descriptors, the metamodel computes the complex ECT signal over a set of K measurement points uniformly distributed on the (x, y) plane

$$
\mathbf{\Psi} = \Phi \{ \mathbf{p} \} = \{ \Psi_k; \, k = 1, ..., K \}
$$
\n
$$
(2)
$$

where

 $\Psi_k = \Re \{ \Psi_k \} + j \Im \{ \Psi_k \}$ is the complex-valued ECT signal collected by the k-th measurement point (i.e., the impedan
e variation on the oil);

• Φ {.} is the forward operator, linking the defect barycentre (p) to the collected ECT signal (Ψ).

The goal of the inverse problem is to retrieve an estimation of the (unknown) dimensions of the flaw $\tilde{\mathbf{p}} =$ $\left\{\tilde{d}_0,\tilde{l}_0,\tilde{w}_0\right\}$ (i.e., the output space) by exploiting the information embedded inside Ψ (i.e., the input space). Su
h a problem an be formulated as follows

$$
\widetilde{\mathbf{p}} = \Phi^{-1} \{ \Psi \} \tag{3}
$$

where $\Phi^{-1}\left\{\cdot\right\}$ denotes the (unknown) inverse operator, that has to be estimated.

1.2 Parameters of the forward solver (fixed)

• Forward solver

- total number of measurement points along x (i.e., across the crack): $H_x = 41$;
- measurement step along x: $\Delta_x = 0.5$ [mm];
- total extension of the measurement region along x: $L_x = 20.0$ [mm];
- total number of measurement points along y (i.e., along the crack): $H_y = 57$;
- measurement step along y: $\Delta_y = 0.5$ [mm];
- total extension of the measurement region along y: $L_y = 28.0$ [mm];
- total number of measurement point computed by the forward solver: $H = H_x \times H_y = 2337$;

Plate		
$\overline{\text{Thickness}} T$	$\overline{1.55}$ [mm]	
Conductivity σ	1.02 [MS/m]	
$_{\rm{Coil}}$		
Inner radius r_1	1.0 [mm]	
Outer radius r_2	1.75 [mm]	
Length l_c	$2.0 \mid \text{mm} \mid$	
Number of turns n_t	328	
Lift-off δ	0.303 [mm]	
Frequency f	100.0 [KHz]	
Crack		
$\overline{\text{x-Coordinate }x_0}$	$15.0 \;[\text{mm}]$	
y-Coordinate y_0	$15.0 \; \mathrm{lmm}$	
z-Coordinate z_0	$1.24 \; \mathrm{ \vert mm}$	

Table 1: Fixed parameters.

Parameter		Min ${\rm [mm]}$ Max ${\rm [mm]}$
Crack Depth d_0	0.31	1 24
Crack Length l_0	50	20.0
Crack Width w_0	ን.በ5	

Table 2: Validity ranges of the forward meta-model.

1.3 Standard LBE Approach (GRID – SVR): Performances

1.3.1 Parameters

• Measurement set-up for the inversion

- considered measurement step: $\Delta_x = \Delta_y = 0.5$ [mm];
- number of considered measurement points $K = K_x \times K_y = 5 \times 31 = 155$;
- measured quantity for each k-th point: $\{\Re(\Psi_k), \Im(\Psi_k)\};$
- total number of measured features: $F = 2 \times K = 310$;

Figure 2: Location of the measurement points selected for the inversion $(K = 155)$.

• Standard LBE Approa
h

- $-$ Training set generation
	- ∗ sampling: uniform grid sampling in (d_0, l_0, w_0) ;
	- ∗ number of quantization levels: $Q_{x_0} = Q_{y_0} = Q_{z_0} = \{5; 6; ...; 10\}$;
	- ∗ number of training samples: $N = Q_{x_0} \times Q_{y_0} \times Q_{z_0} = \{125; 216; ...; 1000\};$
	- ∗ SNR on training data: Noiseless;
- Test set generation
	- ∗ Sampling: Latin Hyper
	ube Sampling (LHS);
	- \ast Number of test samples: $M = 1000$;
	- * SNR on test data: Noiseless + $SNR = \{40; 30; 20; 10\}$ [dB].

1.3.2 Calibration of the SVR parameters via cross-validation

The best (C, γ) pair of parameters is selected for training the three SVR regressors.

Parameters

- number of subsets: $V = 5$;
- variation range for parameter $C: C \in \{10^0; 10^1; ...; 10^6\};$
- variation range for parameter $\gamma: \gamma \in \{10^{-5}; 10^{-5}; ...\}10^0\};$
- dimension of the training set: $N = 1000$;

Results

Table 3: Optimal (C, γ) pairs and CV MSE found by applying a 5-fold cross-validation for the estimation of the crack dimensions.

Figure 3: Standard Approach - True vs. predicted crack dimensions for different dimensions of the training set (N) . $SNR = 20$ [dB] on test *ECT* data.

1.3.4 Prediction Errors

Figure 4: Standard Approach - Normalized Mean Error (NME) vs. training size (N)

Figure 5: Standard Approach - Normalized Mean Error (NME) vs. SNR on the test ECT measurements.

6

More information on the topics of this document can be found in the following list of references.

References

- [1] M. Salucci, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach," *IEEE Trans. Geosci. Remote Sens.*, vol. 54, no. 11, pp. 6818-6832, Nov. 2016.
- [2] M. Salucci, G. Oliveri, F. Viani, R. Miorelli, C. Reboud, P. Calmon, and A. Massa, "A learning-by-examples approach for non-destructive localization and characterization of defects through eddy current testing measurements," *in 2015 IEEE International Symposium on Antennas and Propagation, Vancouver, 2015*, pp. 900-901.
- [3] M. Salucci, S. Ahmed and A. Massa, "An adaptive Learning-by-Examples strategy for efficient Eddy Current Testing of conductive structures," *in 2016 European Conference on Antennas and Propagation*, Davos, 2016, pp. 1-4.
- [4] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," *Inverse Probl.*, vol. 25, pp. 1-41, Dec. 2009.
- [5] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics A review," *IEEE Antennas Propag. Mag.*, pp. 224-238, vol. 57, no. 1, Feb. 2015.
- [6] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," *IEEE Trans. Antennas Propag.*, vol. 63, no. 11, pp. 4889-4900, Nov. 2015.
- [7] M. Salucci, G. Oliveri, and A. Massa, "GPR prospecting through an inverse-scattering frequency-hopping multifocusing approach," *IEEE Trans. Geosci. Remote Sens.*, vol. 53, no. 12, pp. 6573-6592, Dec. 2015.
- [8] T. Moriyama, G. Oliveri, M. Salucci, and T. Takenaka, "A multi-scaling forward-backward time-stepping method for microwave imaging," *IEICE Electron. Express*, vol. 11, no. 16, pp. 1-12, Aug. 2014.
- [9] T. Moriyama, M. Salucci, M. Tanaka, and T. Takenaka, "Image reconstruction from total electric field data with no information on the incident field," *J. Electromagnet. Wave.*, vol. 30, no. 9, pp. 1162-1170, 2016.
- [10] M. Salucci, L. Poli, and A. Massa, "Advanced multi-frequency GPR data processing for non-linear deterministic imaging," *Signal Processing*, vol. 132, pp. 306-318, Mar. 2017.