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Abstract 

 

In this report, an innovative strategy for the estimation of the directions of arrival 

of signals impinging on linear arrays of electromagnetic sensors has been 

assessed. Starting from a sparse representation of the problem solution, the DoA 

estimation problem has been addressed by means of a methodology based on 

the BCS paradigm. A customized implementation exploiting the measurements 

collected at multiple time instants (multiple-snapshots) providing robust and very 

accurate estimates when correlating the information from multiple snapshots 

has been validated. 



MT-BCS DoA estimation

GOAL: The goal of this setion is the analysis of the performanes of the MT-BCS method for the DoA

estimation with W > 1 snapshots. The performanes of the method are ompared with the standard single-task

BCS (ST-BCS) and with the ROOT-MUSIC and ESPRIT algorithms.
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being W the number of snapshots and h ∈ {ST − BCS,MT − BCS}. The main di�erene between the ST

and MT BCS furmulations is that in the seond ase the non-zero elements of the estimated vetors x̂h(tw)

are fored to be in the same loations.

Analysis vs number of snapshots W

Simulation Parameters

• Senario

� BPSK signals (Einc

l
∈ {−1, 1})

� Number of inident signals: L = 2

� Signal diretions: θ = {0, 7} [deg]

� Signal to noise ratio: SNR = 7 dB (equivalent to a SNR = 4 dB if the literature's de�nition is

taken into aount)

• Array parameters

� Elements spaing: d = 0.5λ

� Number of elements: M = 10

• MT-BCS parameters

� Number of angular loations: K = 181

� a = 3.162

� b = 3.981× 101

• BCS parameters

� Number of angular loations: K = 181

� σ2
0 = 4.642× 10−1

� Number of snapshots: W ∈ [1, 25]
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• Simulation

� Number of independent realizations Q = 150 (the noise and the signal amplitudes are random, while

the DoAs are �xed)
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Figure 1: RMSE vs the number of snapshots W .
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Analysis vs SNR

Simulation Parameters

• Senario

� BPSK signals (Einc

l
∈ {−1, 1})

� Number of inident signals: L = 2

� Signal diretions: θ = {0, 7} [deg]

� Signal to noise ratio: SNR ∈ [−5, 20] dB (SNR ∈ [−8, 17] dB if the literature's de�nition is

taken into aount)

• Array parameters

� Elements spaing: d = 0.5λ

� Number of elements: M = 10

• MT-BCS parameters

� Number of angular loations: K = 181

� a = 3.162

� b = 3.981× 101

• BCS parameters

� Number of angular loations: K = 181

� σ2
0 = 4.642× 10−1

� Number of snapshots: W = 20

• Simulation

� Number of independent realizations Q = 150 (the noise and the signal amplitudes are random, while

the DoAs are �xed)
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Figure 2: RMSE vs the SNR.
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Analysis vs ∆θl(l+1)

Simulation Parameters

• Senario

� BPSK signals (Einc

l
∈ {−1, 1})

� Number of inident signals: L = 2

� Signals spaing: ∆θl(l+1) ∈ [2, 20] deg

� Signals diretions: θ =
{

−∆θ
l(l+1)

2 , ∆θ
l(l+1)

2

}

[deg]

� Signal to noise ratio: SNR = 7 dB (equivalent to a SNR = 4 dB if the literature's de�nition is

taken into aount)

• Array parameters

� Elements spaing:

� Number of elements: M = 10

• MT-BCS parameters

� Number of angular loations: K = 181

� a = 3.162

� b = 3.981× 101

• BCS parameters

� Number of angular loations: K = 181

� σ2
0 = 4.642× 10−1

� Number of snapshots: W = 20

• Simulation

� Number of independent realizations Q = 150 (the noise and the signal amplitudes are random, while

the DoAs are �xed)
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MT-BCS vs ST-BCS omparison: estimation examples

Simulation Parameters

• Senario

� BPSK signals (Einc

l
∈ {−1, 1})

� Number of inident signals: L ∈ [1, 9]

� Signal diretions:

L θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

1 0 - - - - - - - -

2 0 7 - - - - - - -

4 0 7 35 - - - - -

6 0 7 35 −20 22 −37 - - -

8 0 7 35 −20 22 −37 −9 −67 -

9 0 7 35 −20 22 −37 −9 −67 54

Table 1: Signal diretions for di�erent numbers of signals.

� Signal to noise ratio: SNR = 7 dB

• Array parameters

� Elements spaing: d = 0.5λ

� Number of elements: M = 10

• ST −BCS and MT −BCS parameters

� Number of angular loations: K = 181

� Number of snapshots: W = 20
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Figure 4: MT −BCS vs ST −BCS: esstimated signal amplitudes when L = 2 signals impinging on the array.

The number of snapshots is W = 25.
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Figure 5: MT −BCS vs ST −BCS: esstimated signal amplitudes when L = 4 signals impinging on the array.

The number of snapshots is W = 25.
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Figure 6: MT −BCS vs ST −BCS: esstimated signal amplitudes when L = 6 signals impinging on the array.

The number of snapshots is W = 25.
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Figure 7: MT −BCS vs ST −BCS: esstimated signal amplitudes when L = 8 signals impinging on the array.

The number of snapshots is W = 25.
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Figure 8: MT −BCS vs ST −BCS: esstimated signal amplitudes when L = 9 signals impinging on the array.

The number of snapshots is W = 25.
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More information on the topics of this document can be found in the following list of references.
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