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Abstract 

 

This report deals with the Direction of arrival (DoA) estimation problem 

formulated within the Bayesian Compressive Sensing (BCS) framework. The 

performances of a novel method that directly works on the voltages measured at 

the output of the array elements without requiring the computation of the 

covariance matrix and that provide accurate and reliable DoAs estimation also 

without the a-priori knowledge on the number of incident signals have been 

investigated. The effectiveness of the proposed approach is assessed through an 

extensive numerical analysis addressing different scenarios, signal configurations, 

and noise conditions. 



Estimation examples

L = 2, SNR = 2 dB
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L̃ > L
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Figure 1: BCS DoA estimation examples : (a) L̃ = L with low RMSEθ, (b) L̃ = L with high RMSEθ, ()

L̃ > L with low RMSEθ, (d) L̃ > L with high RMSEθ and (e) L̃ < L with high RMSEθ (in this ase it is

impossible to obtain a low RMSEθ).
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L = 2, SNR = 10 dB
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Figure 2: BCS DoA estimation examples : (a) L̃ = L with low RMSEθ, (b) L̃ = L with high RMSEθ, ()

L̃ > L with low RMSEθ, (d) L̃ > L with high RMSEθ and (e) L̃ < L with high RMSEθ (in this ase it is

impossible to obtain a low RMSEθ).
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L = 4, SNR = 2 dB

L̃ = L
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Figure 3: BCS DoA estimation examples : (a) L̃ = L with low RMSEθ, (b) L̃ = L with high RMSEθ, ()

L̃ > L with low RMSEθ, (d) L̃ > L with high RMSEθ and (e) L̃ < L with high RMSEθ (in this ase it is

impossible to obtain a low RMSEθ).
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L = 4, SNR = 10 dB
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Figure 4: BCS DoA estimation examples : (a) L̃ = L with low RMSEθ, (b) L̃ = L with high RMSEθ, ()

L̃ > L with low RMSEθ, (d) L̃ > L with high RMSEθ and (e) L̃ < L with high RMSEθ (in this ase it is

impossible to obtain a low RMSEθ).
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L = 6, SNR = 2 dB
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Figure 5: BCS DoA estimation examples : (a) L̃ = L with low RMSEθ, (b) L̃ = L with high RMSEθ, ()

L̃ > L with low RMSEθ, (d) L̃ > L with high RMSEθ and (e) L̃ < L with high RMSEθ (in this ase it is

impossible to obtain a low RMSEθ).
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Performanes analysis

GOAL: this setion is aimed to analyzing the performanes of the BCS method in terms of RMSE and PL.

The RMSE has been omputed onsidering two ases:

• the number of signals is not known

• the number of signals in known

0.0.1 Performanes vs the SNR

Simulation Parameters

• Senario

� BPSK signals (Einc

l
∈ {−1, 1})

� Number of inident signals: L = 2

� Signal diretions: θ = {0, 7} [deg]

� Signal to noise ratio: SNR = [−5, 20] dB

• Array parameters

� Elements spaing: d = 0.5λ

� Number of elements: M = 10

• BCS parameters

� Number of angular loations: K = 181

� σ2
0 = 4.642× 10−1

• Simulation

� Number of independent realizations Q = 100 (the noise and the signal amplitudes are random, while

the DoAs are �xed)

7



 0

 10

 20

 30

 40

 50

 60

-2 0 5 10 15 20

P
L

SNR [dB]

M=10, K=181, L=2

(a)

10
0

10
1

10
2

-2 0 5 10 15 20

R
M

S
E

, 
[d

e
g
]

SNR [dB]

M=10, K=181, L=2

(b)

Figure 6: BCS performanes analysis: (a) PL and (b) RMSE vs the SNR value (L is unknown).
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Figure 7: BCS performanes analysis: RMSE vs the SNR value (L is known).
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Performanes vs the number of array elements M

Simulation Parameters

• Senario

� BPSK signals (Einc

l
∈ {−1, 1})

� Number of inident signals: L = 2

� Signal diretions: θ = {0, 7} [deg]

� Signal to noise ratio: SNR = 7 dB

• Array parameters

� Elements spaing: d = 0.5λ

� Number of elements: M ∈ [5, 30]

• BCS parameters

� Number of angular loations: K = 181

� σ2
0 = 4.642× 10−1

• Simulation

� Number of independent realizations Q = 100 (the noise and the signal amplitudes are random, while

the DoAs are �xed)
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Figure 8: BCS performanes analysis: (a) PL and (b) RMSE vs the number of array elements M (L is

unknown).
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Figure 9: BCS performanes analysis: RMSE vs vs the number of array elements M (L is known).
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Performanes vs the number of inident signals L

Simulation Parameters

• Senario

� BPSK signals (Einc

l
∈ {−1, 1})

� Number of inident signals: L ∈ [1, 7]

� Signal diretions:

L θ1 θ2 θ3 θ4 θ5 θ6 θ7

1 0 - - - - - -

2 0 7 - - - - -

3 0 7 −12 - - - -

4 0 7 −12 −24 - - -

5 0 7 −12 −24 45 - -

6 0 7 −12 −24 45 75 -

7 0 7 −12 −24 45 75 −33

Table 1: Signal diretions for di�erent numbers of signals.

� Signal to noise ratio: SNR = 7 dB

• Array parameters

� Elements spaing: d = 0.5λ

� Number of elements: M = 10

• BCS parameters

� Number of angular loations: K = 181

� σ2
0 = 4.642× 10−1

• Simulation

� Number of independent realizations Q = 100 (the noise and the signal amplitudes are random, while

the DoAs are �xed)
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Figure 10: BCS performanes analysis: (a) PL and (b) RMSE vs the number of inident signals L (L is

unknown).
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Figure 11: BCS performanes analysis: RMSE vs the number of inident signals L (L is known).
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Performanes vs the signal spaing ∆θ

Simulation Parameters

• Senario

� BPSK signals (Einc

l
∈ {−1, 1})

� Number of inident signals: L = 2

� Signals spaing: ∆θl(l+1) ∈ [2, 20] deg

� Signals diretions: θ =
{
−∆θ

l(l+1)

2 , ∆θ
l(l+1)

2

}
[deg]

� Signal to noise ratio: SNR = 7 dB

• Array parameters

� Elements spaing: d = 0.5λ

� Number of elements: M = 10

• BCS parameters

� Number of angular loations: K = 181

� σ2
0 = 4.642× 10−1

• Simulation

� Number of independent realizations Q = 100 (the noise and the signal amplitudes are random, while

the DoAs are �xed)
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Figure 12: BCS performanes analysis: (a) PL and (b) RMSE vs the distane between inident signals (L is

unknown).
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Figure 13: BCS performanes analysis: RMSE vs the distane between inident signals (L is known).
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Single Snapshot Comparison with ESPRIT

Analysis of the performanes of the algorithm when only W = 1 snapshot is onsidered

The objetive of this setion is to ompare the performane of the proposed method with the performanes of

the ESPRIT method. In order to ompare the two methods under the same onditions, the DoA estimation

is performed only from one snapshot. As it an be notied, the ESPRIT method does not work with just one

snapshot.

Case 01: signals DoAs loked to the BCS grid In the following example the diretions of arrival of the

impinging signals are loked to the user-de�ned grid used by the BCS solver.

• Senario

� L = 2

� θ = {0, 7} [deg]

� BPSK signals

� SNR ∈ [0, 20] dB (def. Imaging)

• Array

� M = {10, 25}

� d = 0.5λ

� W = 1

• Method

� σ2
0 = 4.642× 10−1

� K = 181

• Simulation

� Q = 200 independent realizations
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Figure 14: RMSE vs SNR when only W = 1 snapshots are aquired. As it an be observed, ompared to

BCS, the performanes of ESPRIT are very poor.

Case 02: free signals DoAs In the following example the diretion of arrival of the inident signals are not

loked to the BCS solver grid.

• Senario

� L = 2

� θ = {0, 7} [deg]

� BPSK signals

� SNR ∈ [0, 20] dB (def. Imaging)

• Array

� M = {10, 25}

� d = 0.5λ

� W = 1

• Method

� σ2
0 = 4.642× 10−1

� K = 181

• Simulation

� Q = 200 independent realizations
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More information on the topics of this document can be found in the following list of references.
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