SYNTHESIS OF METAMATERIAL MICROSTRIP-PRINTED POLARIZERS THROUGH A SYSTEM-BY-DESIGN APPROACH

A. Gelmini

Abstract

Wave polarizers have several applications in those scenarios where a "wave polarization filtering" is required to enhance transmission/reception sensitivity, e.g. in radar, satellite, and communication applications. Towards this end, typical polarizers are based on wire grids, which can be used to enforce linear polarization to the transmitted field. To achieve more complex polarization states, the use of artificial materials consisting of regularly spaced microstrip patches with suitable size and shape on has been recently proposed. However, their optimal design turns out complicated because of the several degrees of freedom at hand (shape of the patch, dimension, orientation, lattice, etc.).

In this project, the design of wave polarizers comprising artificial microstrip-printed metamaterials consisting of an infinite regular grid of suitably designed patches will be considered. More specifically, the aim of the activity will be to design the material composing the polarizer through a System-by-Design (SbD) strategy. Such an approach will comprise a Global Optimization block and a full-wave solver able to effectively deal with periodic structures of equal cells. The overall SbD strategy will therefore work on a "single cell" model, which will be simulated considering periodic boundary conditions. The goal of the synthesis will be to minimize the impedance mismatching for the waveguide-fed phased array when steered. The final result will be the design of a single or multi-layer polarizer based on a planar microstrip-printed metamaterial.

Reference Bibliography: System-by-Design [1]-[3]; Metamaterials [4]-[9].


This report is submitted in partial fulfillment of the degree of the course “ACM”.
Supervisors: Prof. Andrea Massa, Dr. Giacomo Oliveri.